scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that using HAc data significantly improves the performance of motif-based TF binding site prediction, and within regions of high HAc, local minima of the HAc ChIP-Seq signal are particularly strongly correlated with TF binding locations.
Abstract: Motivation: Histone acetylation (HAc) is associated with open chromatin, and HAc has been shown to facilitate transcription factor (TF) binding in mammalian cells. In the innate immune system context, epigenetic studies strongly implicate HAc in the transcriptional response of activated macrophages. We hypothesized that using data from large-scale sequencing of a HAc chromatin immunoprecipitation assay (ChIP-Seq) would improve the performance of computational prediction of binding locations of TFs mediating the response to a signaling event, namely, macrophage activation. Results: We tested this hypothesis using a multi-evidence approach for predicting binding sites. As a training/test dataset, we used ChIP-Seq-derived TF binding site locations for five TFs in activated murine macrophages. Our model combined TF binding site motif scanning with evidence from sequence-based sources and from HAc ChIP-Seq data, using a weighted sum of thresholded scores. We find that using HAc data significantly improves the performance of motif-based TF binding site prediction. Furthermore, we find that within regions of high HAc, local minima of the HAc ChIP-Seq signal are particularly strongly correlated with TF binding locations. Our model, using motif scanning and HAc local minima, improves the sensitivity for TF binding site prediction by ~50% over a model based on motif scanning alone, at a false positive rate cutoff of 0.01. Availability: The data and software source code for model training and validation are freely available online at http://magnet.systemsbiology.net/hac. Contact:aderem@systemsbiology.org; ishmulevich@systemsbiology.org Supplementary information:Supplementary data are available at Bioinformatics online.

74 citations

Journal ArticleDOI
TL;DR: The reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing the understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism.
Abstract: We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.

74 citations

Journal ArticleDOI
18 Dec 2020-Science
TL;DR: A new reference genome for the rhesus macaque, a model nonhuman primate, in which most gaps were closed and most protein-coding genes were annotated is generated, improving gene mapping for biomedical and comparative genetic studies.
Abstract: The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.

74 citations

Journal ArticleDOI
TL;DR: The sequencing of the human genome, in concert with emerging genomic and proteomic technologies permits the definition of a complete and dynamic parts list of the immune and inflammatory systems, which will for the first time provide a comprehensive description of these complex biological processes.

74 citations

Journal ArticleDOI
TL;DR: The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools.
Abstract: Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics. We have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling. The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field.

74 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168