scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination and made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation.

73 citations

Journal ArticleDOI
TL;DR: By extending this study to 100,000 well people, the central points of the HPWP are to establish multiparameter, quantifiable wellness metrics and identify markers for wellness to early disease transitions for most common diseases, which will ultimately allow earlier disease intervention.
Abstract: The Hundred Person Wellness Project (HPWP) is a 10-month pilot study of 100 ‘well’ individuals where integrated data from whole-genome sequencing, gut microbiome, clinical laboratory tests and quantified self measures from each individual are used to provide actionable results for health coaching with the goal of optimizing wellness and minimizing disease. In a commentary in BMC Medicine, Diamandis argues that HPWP and similar projects will likely result in ‘unnecessary and potential harmful over-testing’. We argue that this new approach will ultimately lead to lower costs, better healthcare, innovation and economic growth. The central points of the HPWP are: 1) it is focused on optimizing wellness through longitudinal data collection, integration and mining of individual data clouds, enabling development of predictive models of wellness and disease that will reveal actionable possibilities; and 2) by extending this study to 100,000 well people, we will establish multiparameter, quantifiable wellness metrics and identify markers for wellness to early disease transitions for most common diseases, which will ultimately allow earlier disease intervention, eventually transitioning the individual early on from a disease back to a wellness trajectory.

73 citations

Journal ArticleDOI
01 Dec 2009-Genetics
TL;DR: It is shown that additional Ipl1 targets contribute to segregation and the spindle checkpoint, and that kinetochore-bound Ndc80 is phosphorylated on IPl1 sites in vivo, but this phosphorylation is not essential.
Abstract: Phosphorylation of the Ndc80 kinetochore protein by the Ipl1/Aurora B kinase reduces its microtubule binding activity in vitro. We found that kinetochore-bound Ndc80 is phosphorylated on Ipl1 sites in vivo, but this phosphorylation is not essential. Instead, we show that additional Ipl1 targets contribute to segregation and the spindle checkpoint.

73 citations

Journal ArticleDOI
TL;DR: Protein expression during Myc-induced apoptosis is analyzed using an isotope-coded affinity tag quantitative proteomics approach and it is identified that a proapoptotic mitochondrial chloride ion channel, mtCLIC/CLIC4, is induced by Myc.

73 citations

Journal ArticleDOI
TL;DR: The combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain’s major subdivisions, suggesting that the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny.
Abstract: To characterize gene expression patterns in the regional subdivisions of the mammalian brain, we integrated spatial gene expression patterns from the Allen Brain Atlas for the adult mouse with panels of cell type-specific genes for neurons, astrocytes, and oligodendrocytes from previously published transcriptome profiling experiments. We found that the combined spatial expression patterns of 170 neuron-specific transcripts revealed strikingly clear and symmetrical signatures for most of the brain’s major subdivisions. Moreover, the brain expression spatial signatures correspond to anatomical structures and may even reflect developmental ontogeny. Spatial expression profiles of astrocyte- and oligodendrocyte-specific genes also revealed regional differences; these defined fewer regions and were less distinct but still symmetrical in the coronal plane. Follow-up analysis suggested that region-based clustering of neuron-specific genes was related to (i) a combination of individual genes with restricted expression patterns, (ii) region-specific differences in the relative expression of functional groups of genes, and (iii) regional differences in neuronal density. Products from some of these neuron-specific genes are present in peripheral blood, raising the possibility that they could reflect the activities of disease- or injury-perturbed networks and collectively function as biomarkers for clinical disease diagnostics.

73 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168