scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphopeptides analysis.
Abstract: The ability to routinely analyze and quantitatively measure changes in protein phosphorylation on a proteome-wide scale is essential for biological and clinical research. We assessed the ability of three common phosphopeptide isolation methods (phosphoramidate chemistry (PAC), immobilized metal affinity chromatography (IMAC) and titanium dioxide) to reproducibly, specifically and comprehensively isolate phosphopeptides from complex mixtures. Phosphopeptides were isolated from aliquots of a tryptic digest of the cytosolic fraction of Drosophila melanogaster Kc167 cells and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Each method reproducibly isolated phosphopeptides. The methods, however, differed in their specificity of isolation and, notably, in the set of phosphopeptides isolated. The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphoproteome analysis.

581 citations

Journal ArticleDOI
TL;DR: A brief overview of miRNA biogenesis and function, the identification and potential roles of circulating extracellular miRNAs, and the prospective uses of mi RNAs as clinical biomarkers are provided.
Abstract: MicroRNAs (miRNAs) are a recently discovered class of small, non-coding RNAs that regulate protein levels post-transcriptionally. miRNAs play important regulatory roles in many cellular processes, including differentiation, neoplastic transformation, and cell replication and regeneration. Because of these regulatory roles, it is not surprising that aberrant miRNA expression has been implicated in several diseases. Recent studies have reported significant levels of miRNAs in serum and other body fluids, raising the possibility that circulating miRNAs could serve as useful clinical biomarkers. Here, we provide a brief overview of miRNA biogenesis and function, the identification and potential roles of circulating extracellular miRNAs, and the prospective uses of miRNAs as clinical biomarkers. Finally, we address several issues associated with the accurate measurement of miRNAs from biological samples.

574 citations

Journal ArticleDOI
31 Jul 2012-PLOS ONE
TL;DR: The difference between serum and plasma miRNA concentration showed some associations with miRNA from platelets, which may indicate that the coagulation process may affect the spectrum of extracellular miRNA in blood.
Abstract: MicroRNAs (miRNAs) are small, non-coding RNAs that regulate various biological processes, primarily through interaction with messenger RNAs. The levels of specific, circulating miRNAs in blood have been shown to associate with various pathological conditions including cancers. These miRNAs have great potential as biomarkers for various pathophysiological conditions. In this study we focused on different sample types' effects on the spectrum of circulating miRNA in blood. Using serum and corresponding plasma samples from the same individuals, we observed higher miRNA concentrations in serum samples compared to the corresponding plasma samples. The difference between serum and plasma miRNA concentration showed some associations with miRNA from platelets, which may indicate that the coagulation process may affect the spectrum of extracellular miRNA in blood. Several miRNAs also showed platform dependent variations in measurements. Our results suggest that there are a number of factors that might affect the measurement of circulating miRNA concentration. Caution must be taken when comparing miRNA data generated from different sample types or measurement platforms.

561 citations

Journal ArticleDOI
A. Gordon Robertson1, Juliann Shih2, Juliann Shih3, Christina Yau4  +170 moreInstitutions (23)
TL;DR: Within D3-UM, EIF1AX- and SRSF2/SF3B1-mutant tumors have distinct somatic copy number alterations and DNA methylation profiles, providing insight into the biology of these low- versus intermediate-risk clinical mutation subtypes.

560 citations

Journal ArticleDOI
Devin P. Locke1, LaDeana W. Hillier1, Wesley C. Warren1, Kim C. Worley2, Lynne V. Nazareth2, Donna M. Muzny2, Shiaw-Pyng Yang1, Zhengyuan Wang1, Asif T. Chinwalla1, Patrick Minx1, Makedonka Mitreva1, Lisa Cook1, Kim D. Delehaunty1, Catrina Fronick1, Heather Schmidt1, Lucinda Fulton1, Robert S. Fulton1, Joanne O. Nelson1, Vincent Magrini1, Craig Pohl1, Tina Graves1, Chris Markovic1, Andy Cree2, Huyen Dinh2, Jennifer Hume2, Christie Kovar2, Gerald R. Fowler2, Gerton Lunter3, Gerton Lunter4, Stephen Meader4, Andreas Heger4, Chris P. Ponting4, Tomas Marques-Bonet5, Tomas Marques-Bonet6, Can Alkan5, Lin Chen5, Ze Cheng5, Jeffrey M. Kidd5, Evan E. Eichler7, Evan E. Eichler5, Simon D. M. White8, Stephen M. J. Searle8, Albert J. Vilella9, Yuan Chen9, Paul Flicek9, Jian Ma10, Jian Ma11, Brian J. Raney11, Bernard B. Suh11, Richard Burhans12, Javier Herrero9, David Haussler11, Rui Faria6, Rui Faria13, Olga Fernando14, Olga Fernando6, Fleur Darré6, Domènec Farré6, Elodie Gazave6, Meritxell Oliva6, Arcadi Navarro6, Roberta Roberto15, Oronzo Capozzi15, Nicoletta Archidiacono15, Giuliano Della Valle16, Stefania Purgato16, Mariano Rocchi15, Miriam K. Konkel17, Jerilyn A. Walker17, Brygg Ullmer17, Mark A. Batzer17, Arian F.A. Smit18, Robert Hubley18, Claudio Casola19, Daniel R. Schrider19, Matthew W. Hahn19, Víctor Quesada20, Xose S. Puente20, Gonzalo R. Ordóñez20, Carlos López-Otín20, Tomas Vinar21, Brona Brejova21, Aakrosh Ratan12, Robert S. Harris12, Webb Miller12, Carolin Kosiol, Heather A. Lawson1, Vikas Taliwal22, André L. Martins22, Adam Siepel22, Arindam RoyChoudhury23, Xin Ma22, Jeremiah D. Degenhardt22, Carlos Bustamante24, Ryan N. Gutenkunst25, Thomas Mailund26, Julien Y. Dutheil26, Asger Hobolth26, Mikkel H. Schierup26, Oliver A. Ryder, Yuko Yoshinaga27, Pieter J. de Jong27, George M. Weinstock1, Jeffrey Rogers2, Elaine R. Mardis1, Richard A. Gibbs2, Richard K. Wilson1 
27 Jan 2011-Nature
TL;DR: The orang-utan species, Pongo abelii and Pongo pygmaeus, are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution and a primate polymorphic neocentromere, found in both Pongo species are described.
Abstract: 'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.

555 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168