scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
19 Feb 2007-AIDS
TL;DR: Rapid progression of HIV-1 infection was associated with TLR9 polymorphisms, and this association has potential implications for intervention strategies and vaccine developments.
Abstract: BACKGROUND: The clinical course of HIV-1 infection is highly variable among individuals, at least in part as a result of genetic polymorphisms in the host. Toll-like receptors (TLRs) have a key role in innate immunity and mutations in the genes encoding these receptors have been associated with increased or decreased susceptibility to infections. OBJECTIVES: To determine whether single-nucleotide polymorphisms (SNPs) in TLR2-4 and TLR7-9 influenced the natural course of HIV-1 infection. METHODS: Twenty-eight SNPs in TLRs were analysed in HAART-naive HIV-positive patients from the Swiss HIV Cohort Study. The SNPs were detected using Sequenom technology. Haplotypes were inferred using an expectation-maximization algorithm. The CD4 T cell decline was calculated using a least-squares regression. Patients with a rapid CD4 cell decline, less than the 15th percentile, were defined as rapid progressors. The risk of rapid progression associated with SNPs was estimated using a logistic regression model. Other candidate risk factors included age, sex and risk groups (heterosexual, homosexual and intravenous drug use). RESULTS: Two SNPs in TLR9 (1635A/G and +1174G/A) in linkage disequilibrium were associated with the rapid progressor phenotype: for 1635A/G, odds ratio (OR), 3.9 [95% confidence interval (CI),1.7-9.2] for GA versus AA and OR, 4.7 (95% CI,1.9-12.0) for GG versus AA (P = 0.0008). CONCLUSION: Rapid progression of HIV-1 infection was associated with TLR9 polymorphisms. Because of its potential implications for intervention strategies and vaccine developments, additional epidemiological and experimental studies are needed to confirm this association.

156 citations

Journal ArticleDOI
TL;DR: A two-gene relative expression classifier is devised that distinguishes between GIST and LMS with an accuracy of 99.3% on the microarray samples and an estimated accuracy on future cases and has the potential to be rapidly implemented in a clinical setting.
Abstract: Gastrointestinal stromal tumor (GIST) has emerged as a clinically distinct type of sarcoma with frequent overexpression and mutation of the c-Kit oncogene and a favorable response to imatinib mesylate [also known as STI571 (Gleevec)] therapy. However, a significant diagnostic challenge remains in the differentiation of GIST from leiomyosarcomas (LMSs). To improve on the diagnostic evaluation and to complement the immunohistochemical evaluation of these tumors, we performed a whole-genome gene expression study on 68 well characterized tumor samples. Using bioinformatic approaches, we devised a two-gene relative expression classifier that distinguishes between GIST and LMS with an accuracy of 99.3% on the microarray samples and an estimated accuracy of 97.8% on future cases. We validated this classifier by using RT-PCR on 20 samples in the microarray study and on an additional 19 independent samples, with 100% accuracy. Thus, our two-gene relative expression classifier is a highly accurate diagnostic method to distinguish between GIST and LMS and has the potential to be rapidly implemented in a clinical setting. The success of this classifier is likely due to two general traits, namely that the classifier is independent of data normalization and that it uses as simple an approach as possible to achieve this independence to avoid overfitting. We expect that the use of simple marker pairs that exhibit these traits will be of significant clinical use in a variety of contexts.

156 citations

Journal ArticleDOI
TL;DR: A directed LC-MS/MS approach that alleviates the limitations of DDA precursor ion selection by decoupling peak detection and sequencing of selected precursor ions is presented.

156 citations

Journal ArticleDOI
TL;DR: It is shown that YDR079c-a is a bona fide component of polymerase II preinitiation complexes and its role in transcription is investigated, which is essential for the understanding of TFIIH function in transcription, DNA repair and human disease.
Abstract: We previously described the use of quantitative proteomics to study macromolecular complexes1. Applying the method to analyze a yeast RNA polymerase II preinitiation complex, we identified a new 8-kDa protein, encoded by the uncharacterized open reading frame YDR079c-a, as a potential new component of the preinitiation complex. Here we show that YDR079c-a is a bona fide component of polymerase II preinitiation complexes and investigate its role in transcription. YDR079c-a is recruited to promoters both in vivo and in vitro and is required for efficient transcription in vitro and for normal induction of GAL genes. In addition, YDR079c-a is a core component of general transcription and DNA repair factor IIH and is required for efficient recruitment of TFIIH to a promoter. Yeast lacking YDR079c-a grow slowly, and, like strains carrying mutations in core TFIIH subunits, are sensitive to ultraviolet radiation. YDR079c-a is conserved throughout evolution, and mutations in the human ortholog account for a DNA repair–deficient form of the tricothiodystrophy disorder called TTD-A2. The identification of a new, evolutionarily conserved, core TFIIH subunit is essential for our understanding of TFIIH function in transcription, DNA repair and human disease.

156 citations

Journal ArticleDOI
TL;DR: This work has combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae and shows that the small GTPase Rho1p is specifically recruited to peroxISomes upon their induction in a process dependent on its interaction with theperoxisome membrane protein Pex25p.
Abstract: We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of Saccharomyces cerevisiae. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis.

156 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168