scispace - formally typeset
Search or ask a question
Institution

Institute of Cosmology and Gravitation, University of Portsmouth

About: Institute of Cosmology and Gravitation, University of Portsmouth is a based out in . It is known for research contribution in the topics: Galaxy & Redshift. The organization has 297 authors who have published 1207 publications receiving 76919 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to determine the Hubble constant from optical and infrared observations of over 600 Cepheid variables in the host galaxies of eight recent Type Ia supernovae (SNe Ia), providing the calibration for a magnitude-redshift relation based on 253 SNeIa.
Abstract: We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to determine the Hubble constant from optical and infrared observations of over 600 Cepheid variables in the host galaxies of eight recent Type Ia supernovae (SNe Ia), providing the calibration for a magnitude-redshift relation based on 253 SNe Ia. Increased precision over past measurements of the Hubble constant comes from five improvements: (1) more than doubling the number of infrared observations of Cepheids in the nearby SN hosts; (2) increasing the sample size of ideal SN Ia calibrators from six to eight; (3) increasing by 20% the number of Cepheids with infrared observations in the megamaser host NGC 4258; (4) reducing the difference in the mean metallicity of the Cepheid comparison samples between NGC 4258 and the SN hosts from Δlog [O/H] = 0.08 to 0.05; and (5) calibrating all optical Cepheid colors with a single camera, WFC3, to remove cross-instrument zero-point errors. The result is a reduction in the uncertainty in H 0 due to steps beyond the first rung of the distance ladder from 3.5% to 2.3%. The measurement of H 0 via the geometric distance to NGC 4258 is 74.8 ± 3.1 km s–1 Mpc–1, a 4.1% measurement including systematic uncertainties. Better precision independent of the distance to NGC 4258 comes from the use of two alternative Cepheid absolute calibrations: (1) 13 Milky Way Cepheids with trigonometric parallaxes measured with HST/fine guidance sensor and Hipparcos and (2) 92 Cepheids in the Large Magellanic Cloud for which multiple accurate and precise eclipsing binary distances are available, yielding 74.4 ± 2.5 km s–1 Mpc–1, a 3.4% uncertainty including systematics. Our best estimate uses all three calibrations but a larger uncertainty afforded from any two: H 0 = 73.8 ± 2.4 km s–1 Mpc–1 including systematic errors, corresponding to a 3.3% uncertainty. The improved measurement of H 0, when combined with the Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data, results in a tighter constraint on the equation-of-state parameter of dark energy of w = –1.08 ± 0.10. It also rules out the best-fitting gigaparsec-scale void models, posited as an alternative to dark energy. The combined H 0 + WMAP results yield N eff = 4.2 ± 0.7 for the number of relativistic particle species in the early universe, a low-significance excess for the value expected from the three known neutrino flavors.

1,680 citations

Journal ArticleDOI
TL;DR: In this article, a sample of spectroscopically identified galaxies with z < 0.2 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), covering 6813 deg(2).
Abstract: We create a sample of spectroscopically identified galaxies with z < 0.2 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), covering 6813 deg(2). Galaxies are chosen to sample the highest mass haloes, with an effective bias of 1.5, allowing us to construct 1000 mock galaxy catalogues (described in Paper II), which we use to estimate statistical errors and test our methods. We use an estimate of the gravitational potential to 'reconstruct' the linear density fluctuations, enhancing the baryon acoustic oscillation (BAO) signal in the measured correlation function and power spectrum. Fitting to these measurements, we determine D-V(z(eff) = 0.15) = (664 +/- 25)(r(d)/r(d, fid)) Mpc; this is a better than 4 per cent distance measurement. This 'fills the gap' in BAO distance ladder between previously measured local and higher redshift measurements, and affords significant improvement in constraining the properties of dark energy. Combining our measurement with other BAO measurements from Baryon Oscillation Spectroscopic Survey and 6-degree Field Galaxy Redshift Survey galaxy samples provides a 15 per cent improvement in the determination of the equation of state of dark energy and the value of the Hubble parameter at z = 0 (H-0). Our measurement is fully consistent with the Planck results and the Lambda cold dark matter concordance cosmology, but increases the tension between Planck+BAO H-0 determinations and direct H-0 measurements.

1,566 citations

Journal ArticleDOI
TL;DR: Galaxy Zoo as mentioned in this paper provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS), which was made possible by inviting the general public to visually inspect and classify these galaxies via the internet.
Abstract: In order to understand the formation and subsequent evolution of galaxies one must first distinguish between the two main morphological classes of massive systems: spirals and early-type systems. This paper introduces a project, Galaxy Zoo, which provides visual morphological classifications for nearly one million galaxies, extracted from the Sloan Digital Sky Survey (SDSS). This achievement was made possible by inviting the general public to visually inspect and classify these galaxies via the internet. The project has obtained more than 4 × 107 individual classifications made by ∼105 participants. We discuss the motivation and strategy for this project, and detail how the classifications were performed and processed. We find that Galaxy Zoo results are consistent with those for subsets of SDSS galaxies classified by professional astronomers, thus demonstrating that our data provide a robust morphological catalogue. Obtaining morphologies by direct visual inspection avoids introducing biases associated with proxies for morphology such as colour, concentration or structural parameters. In addition, this catalogue can be used to directly compare SDSS morphologies with older data sets. The colour–magnitude diagrams for each morphological class are shown, and we illustrate how these distributions differ from those inferred using colour alone as a proxy for morphology.

1,380 citations

Journal ArticleDOI
Luca Amendola1, Stephen Appleby2, Anastasios Avgoustidis3, David Bacon4, Tessa Baker5, Marco Baldi6, Marco Baldi7, Marco Baldi8, Nicola Bartolo9, Nicola Bartolo8, Alain Blanchard10, Camille Bonvin11, Stefano Borgani8, Stefano Borgani12, Enzo Branchini8, Enzo Branchini13, Clare Burrage3, Stefano Camera, Carmelita Carbone14, Carmelita Carbone8, Luciano Casarini15, Luciano Casarini16, Mark Cropper17, Claudia de Rham18, J. P. Dietrich19, Cinzia Di Porto, Ruth Durrer11, Anne Ealet, Pedro G. Ferreira5, Fabio Finelli8, Juan Garcia-Bellido20, Tommaso Giannantonio19, Luigi Guzzo8, Luigi Guzzo14, Alan Heavens18, Lavinia Heisenberg21, Catherine Heymans22, Henk Hoekstra23, Lukas Hollenstein, Rory Holmes, Zhiqi Hwang24, Knud Jahnke25, Thomas D. Kitching17, Tomi S. Koivisto26, Martin Kunz11, Giuseppe Vacca27, Eric V. Linder28, M. March29, Valerio Marra30, Carlos Martins31, Elisabetta Majerotto11, Dida Markovic32, David J. E. Marsh33, Federico Marulli8, Federico Marulli6, Richard Massey34, Yannick Mellier35, Francesco Montanari36, David F. Mota15, Nelson J. Nunes37, Will J. Percival32, Valeria Pettorino38, Valeria Pettorino39, Cristiano Porciani, Claudia Quercellini, Justin I. Read40, Massimiliano Rinaldi41, Domenico Sapone42, Ignacy Sawicki43, Roberto Scaramella, Constantinos Skordis43, Constantinos Skordis44, Fergus Simpson45, Andy Taylor22, Shaun A. Thomas, Roberto Trotta18, Licia Verde45, Filippo Vernizzi38, Adrian Vollmer, Yun Wang46, Jochen Weller19, T. G. Zlosnik47 
TL;DR: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program as discussed by the authors, which will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shift of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky.
Abstract: Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

1,211 citations

Journal ArticleDOI
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
Abstract: We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

1,200 citations


Authors

Showing all 297 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Daniel Thomas13484684224
Will J. Percival12947387752
Tommaso Treu12671549090
Claudia Maraston10336259178
Marco Cavaglia9337260157
Ashley J. Ross9024846395
David A. Wake8921446124
László Á. Gergely8942660674
L. K. Nuttall8925354834
Rita Tojeiro8722943140
Roy Maartens8643223747
David Keitel8525356849
Davide Pietrobon8315262010
Gong-Bo Zhao8128735540
Network Information
Related Institutions (5)
Institute for the Physics and Mathematics of the Universe
4.4K papers, 198.3K citations

94% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

92% related

Kavli Institute for Theoretical Physics
3.1K papers, 185.5K citations

90% related

Perimeter Institute for Theoretical Physics
6.6K papers, 349K citations

89% related

Niels Bohr Institute
5.9K papers, 274.2K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202162
202076
201987
201864
201776
201676