scispace - formally typeset
Search or ask a question
Institution

Instituto Superior Técnico

Education
About: Instituto Superior Técnico is a based out in . It is known for research contribution in the topics: Catalysis & Finite element method. The organization has 10085 authors who have published 30226 publications receiving 667524 citations. The organization is also known as: IST & Instituto Superior Tecnico.


Papers
More filters
Posted Content
TL;DR: In this paper, the integrability problem of Lie algebroids is solved by two computable obstructions, i.e., local Lie groupoids and the smoothness of the Poisson sigma model.
Abstract: In this paper we present the solution to a longstanding problem of differential geometry: Lie's third theorem for Lie algebroids. We show that the integrability problem is controlled by two computable obstructions. As applications we derive, explain and improve the known integrability results, we establish integrability by local Lie groupoids, we clarify the smoothness of the Poisson sigma-model for Poisson manifolds, and we describe other geometrical applications.

352 citations

Journal ArticleDOI
TL;DR: In this article, the effects of pair-instability pulsation supernovae on merger rate and mass using populations of double black-hole binaries formed through the isolated binary classical evolution channel were investigated.
Abstract: Context. Mergers of two stellar-origin black holes are a prime source of gravitational waves and are under intensive investigation. One crucial ingredient in their modeling has been neglected: pair-instability pulsation supernovae with associated severe mass loss may suppress the formation of massive black holes, decreasing black-hole-merger rates for the highest black-hole masses. Aims. We demonstrate the effects of pair-instability pulsation supernovae on merger rate and mass using populations of double black-hole binaries formed through the isolated binary classical evolution channel. Methods. The mass loss from pair-instability pulsation supernova is estimated based on existing hydrodynamical calculations. This mass loss is incorporated into the StarTrack population synthesis code. StarTrack is used to generate double black-hole populations with and without pair-instability pulsation supernova mass loss. Results. The mass loss associated with pair-instability pulsation supernovae limits the Population I/II stellar-origin black-hole mass to 50 M ⊙ , in tension with earlier predictions that the maximum black-hole mass could be as high as 100 M ⊙ . In our model, neutron stars form with mass 1−2 M ⊙ . We then encounter the first mass gap at 2−5 M ⊙ with the compact object absence due to rapid supernova explosions, followed by the formation of black holes with mass 5−50 M ⊙ , with a second mass gap at 50−135 M ⊙ created by pair-instability pulsation supernovae and by pair-instability supernovae. Finally, black holes with masses above 135 M ⊙ may potentially form to arbitrarily high mass limited only by the extent of the initial mass function and the strength of stellar winds. Suppression of double black-hole-merger rates by pair-instability pulsation supernovae is negligible for our evolutionary channel. Our standard evolutionary model, with the inclusion of pair-instability pulsation supernovae and pair-instability supernovae, is fully consistent with the Laser Interferometric Gravitational-wave Observatory (LIGO) observations of black-hole mergers: GW150914, GW151226, and LVT151012. The LIGO results are inconsistent with high (≳ 400 km s-1 ) black hole (BH) natal kicks. We predict the detection of several, and up to as many as ~60, BH-BH mergers with a total mass of 10−150 M ⊙ (most likely range: 20−80 M ⊙ ) in the forthcoming ~60 effective days of the LIGO O2 observations, assuming the detectors reach the optimistic target O2 sensitivity.

349 citations

Journal ArticleDOI
Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1329 moreInstitutions (150)
TL;DR: The GW190521 signal is consistent with a binary black hole (BBH) merger source at redshift 0.13-0.30 Gpc-3 yr-1.8 as discussed by the authors.
Abstract: The gravitational-wave signal GW190521 is consistent with a binary black hole (BBH) merger source at redshift 0.8 with unusually high component masses, 85-14+21 M o˙ and 66-18+17 M o˙, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range 65-120 M o˙. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger (142-16+28 M o˙) classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular BBH coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of the coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be 0.13-0.11+0.30 Gpc-3 yr-1. We discuss the astrophysical implications of GW190521 for stellar collapse and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescences, or via hierarchical mergers of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a framework for forecasting cosmological constraints from future neutral hydrogen intensity mapping experiments at low to intermediate redshifts, and establish a simple way of comparing such surveys with optical galaxy redshift surveys.
Abstract: We present a framework for forecasting cosmological constraints from future neutral hydrogen intensity mapping experiments at low to intermediate redshifts. In the process, we establish a simple way of comparing such surveys with optical galaxy redshift surveys. We explore a wide range of experimental configurations and assess how well a number of cosmological observables (the expansion rate, growth rate, and angular diameter distance) and parameters (the densities of dark energy and dark matter, spatial curvature, the dark energy equation of state, etc.) will be measured by an extensive roster of upcoming experiments. A number of potential contaminants and systematic effects are also studied in detail. The overall picture is encouraging?if autocorrelation calibration can be controlled to a sufficient level, Phase I of the Square Kilometre Array should be able to constrain the dark energy equation of state about as well as a DETF Stage IV galaxy redshift survey like Euclid, in roughly the same time frame.

347 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the quasinormal modes of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically anti-de Sitter (AdS) spacetime.
Abstract: We study the quasinormal modes (QNM) of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically anti--de Sitter (AdS) spacetime. Some of the electromagnetic modes do not oscillate; they only decay, since they have pure imaginary frequencies. The gravitational modes show peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasinormal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the usual one in scalar and electromagnetic perturbations in AdS spacetime, but has a similar behavior to the Schwarzschild black hole in an asymptotically flat spacetime: the imaginary part of the frequency goes as ${1/r}_{+},$ where ${r}_{+}$ is the horizon radius. We also investigate the small black-hole limit showing that the imaginary part of the frequency goes as ${r}_{+}^{2}.$ These results are important to the AdS/CFT conjecture since, according to it, the QNM's describe the approach to equilibrium in the conformal field theory.

346 citations


Authors

Showing all 10288 results

NameH-indexPapersCitations
Joao Seixas1531538115070
A. Gomes1501862113951
Amartya Sen149689141907
António Amorim136147796519
Joao Varela133141192438
Pietro Faccioli132137889795
João Carvalho126127877017
Pedro Jorge12477668658
Pedro Silva12496174015
A. De Angelis11853454469
Hermine Katharina Wöhri11662955540
Helena Santos114105854286
P. Conde Muiño10955856133
Joao Saraiva10751953340
J. N. Reddy10692666940
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

95% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
2022354
20212,263
20202,433
20192,327
20182,190