scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed an ecological network model for the system, and used four Chinese cities as examples of how this approach provides insights into the flows within the system at both high and low levels of detail.

128 citations

Journal ArticleDOI
TL;DR: Global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations are presented and it is shown that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhIZal vegetation, with potential ramifications to terrestrial carbon stocks.
Abstract: Vegetation impacts on ecosystem functioning are mediated by mycorrhizas, plant–fungal associations formed by most plant species. Ecosystems dominated by distinct mycorrhizal types differ strongly in their biogeochemistry. Quantitative analyses of mycorrhizal impacts on ecosystem functioning are hindered by the scarcity of information on mycorrhizal distributions. Here we present global, high-resolution maps of vegetation biomass distribution by dominant mycorrhizal associations. Arbuscular, ectomycorrhizal, and ericoid mycorrhizal vegetation store, respectively, 241 ± 15, 100 ± 17, and 7 ± 1.8 GT carbon in aboveground biomass, whereas non-mycorrhizal vegetation stores 29 ± 5.5 GT carbon. Soil carbon stocks in both topsoil and subsoil are positively related to the community-level biomass fraction of ectomycorrhizal plants, though the strength of this relationship varies across biomes. We show that human-induced transformations of Earth’s ecosystems have reduced ectomycorrhizal vegetation, with potential ramifications to terrestrial carbon stocks. Our work provides a benchmark for spatially explicit and globally quantitative assessments of mycorrhizal impacts on ecosystem functioning and biogeochemical cycling. Mycorrhizas—mutualistic relationships formed between fungi and most plant species—are functionally linked to soil carbon stocks. Here the authors map the global distribution of mycorrhizal plants and quantify links between mycorrhizal vegetation patterns and terrestrial carbon stocks.

128 citations

Journal ArticleDOI
TL;DR: In this article, the authors used historical time series data to assess technological trajectories in future scenarios and found a consistent extent - duration relationship across both technologies and scenarios, which appears to be conservative relative to what has been evidenced historically.
Abstract: Future scenarios of the energy system under greenhouse gas emission constraints depict dramatic growth in a range of energy technologies. Technological growth dynamics observed historically provide a useful comparator for these future trajectories. We find that historical time series data reveal a consistent relationship between how much a technology’s cumulative installed capacity grows, and how long this growth takes. This relationship between extent (how much) and duration (for how long) is consistent across both energy supply and end-use technologies, and both established and emerging technologies. We then develop and test an approach for using this historical relationship to assess technological trajectories in future scenarios. Our approach for “learning from the past” contributes to the assessment and verification of integrated assessment and energy-economic models used to generate quantitative scenarios. Using data on power generation technologies from two such models, we also find a consistent extent - duration relationship across both technologies and scenarios. This relationship describes future low carbon technological growth in the power sector which appears to be conservative relative to what has been evidenced historically. Specifically, future extents of capacity growth are comparatively low given the lengthy time duration of that growth. We treat this finding with caution due to the low number of data points. Yet it remains counter-intuitive given the extremely rapid growth rates of certain low carbon technologies under stringent emission constraints. We explore possible reasons for the apparent scenario conservatism, and find parametric or structural conservatism in the underlying models to be one possible explanation.

128 citations

Journal ArticleDOI
TL;DR: A comprehensive review and extensive analysis of the peer-reviewed literature on electricity access and its impact on rural socio- economic development, and vice versa, confirms that electricity use is interconnected through complex casual relations with multiple dimensions of socio-economic development.

128 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325