scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
01 Nov 2014
TL;DR: In this paper, the authors present a comprehensive global evaluation of future wheat yields and production under distinct Representative Concentration Pathways (RCPs) using the Environmental Policy Integrated Climate (EPIC) agro-ecosystem model.
Abstract: Wheat is the third largest crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. A large geographic variation in wheat yields across similar climates points to sizeable yield gaps in many nations, and indicates a regionally variable flexibility to increase wheat production. Wheat is particularly sensitive to a changing climate thus limiting management opportunities to enable (sustainable) intensification with potentially significant implications for future wheat production. We present a comprehensive global evaluation of future wheat yields and production under distinct Representative Concentration Pathways (RCPs) using the Environmental Policy Integrated Climate (EPIC) agro-ecosystem model. We project, in a geographically explicit manner, future wheat production pathways for rainfed and irrigated wheat systems. We explore agricultural management flexibility by quantifying the development of wheat yield potentials under current, rainfed, exploitable (given current irrigation infrastructure), and irrigated intensification levels. Globally, because of climate change, wheat production under conventional management (around the year 2000) would decrease across all RCPs by 37 to 52 and 54 to 103 Mt in the 2050s and 2090s, respectively. However, the exploitable and potential production gap will stay above 350 and 580 Mt, respectively, for all RCPs and time horizons, indicating that negative impacts of climate change can globally be offset by adequate intensification using currently existing irrigation infrastructure and nutrient additions. Future world wheat production on cropland already under cultivation can be increased by ~ 35% through intensified fertilization and ~ 50% through increased fertilization and extended irrigation, if sufficient water would be available. Significant potential can still be exploited, especially in rainfed wheat systems in Russia, Eastern Europe and North America.

119 citations

Journal ArticleDOI
TL;DR: In this article, the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) was modelled at varying atmospherically relevant conditions with respect to concentrations of sulfate acid ([H2SO4]), dimethylamine ([DMA]) and trimethyamine ([TMA]), temperature and relative humidity (RH).
Abstract: . Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4]), dimethylamine ([DMA]) and trimethylamine ([TMA]), temperature and relative humidity (RH). We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines) with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs) from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both) had different responses to varying meteorological conditions and concentrations of vapours participating in particle formation. The observed inverse proportionality of the coefficient Kobs with RH and temperature agreed best with the modelled coefficient KA2B2 related to formation of a cluster with two H2SO4 and one or two TMA molecules, assuming that these clusters can grow in collisions with abundant organic vapour molecules. In case this assumption is valid, our results suggest that the formation rate of clusters with at least two of both sulphuric acid and amine molecules might be the rate-limiting step for atmospheric particle formation. More generally, our analysis elucidates the sensitivity of the atmospheric particle formation rate to meteorological variables and concentrations of vapours participating in particle formation (also other than H2SO4).

118 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose diagnostic indicators to characterize model responses to carbon price signals and test these in a diagnostic study of 11 global models, showing a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing.

118 citations

Journal ArticleDOI
22 Mar 2019-Ecology
TL;DR: It is shown from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements, which can determine genotypic selection and therefore have a feedback on ecosystem function and organization.
Abstract: Every living creature on Earth is made of atoms of the various bioelements that are harnessed in the construction of molecules, tissues, organisms, and communities, as we know them. Organisms need these bioelements in specific quantities and proportions to survive and grow. Distinct species have different functions and life strategies, and have therefore developed distinct structures and adopted a certain combination of metabolic and physiological processes. Each species is thus also expected to have different requirements for each bioelement. We therefore propose that a "biogeochemical niche" can be associated with the classical ecological niche of each species. We show from field data examples that a biogeochemical niche is characterized by a particular elementome defined as the content of all (or at least most) bioelements. The differences in elementome among species are a function of taxonomy and phylogenetic distance, sympatry (the bioelemental compositions should differ more among coexisting than among non-coexisting species to avoid competitive pressure), and homeostasis with a continuum between high homeostasis/low plasticity and low homeostasis/high plasticity. This proposed biogeochemical niche hypothesis has the advantage relative to other associated theoretical niche hypotheses that it can be easily characterized by actual quantification of a measurable trait: the elementome of a given organism or a community, being potentially applicable across taxa and habitats. The changes in bioelemental availability can determine genotypic selection and therefore have a feedback on ecosystem function and organization, and, at the end, become another driving factor of the evolution of life and the environment.

118 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a different perspective, with different epistemological assumptions about cause and effect than most existing barrier studies, to analyze why adaptation is often challenging, using the mechanismic framework, and study how the idea for an innovative "Water Plaza" was realized in the city of Rotterdam, the Netherlands.
Abstract: Many of the possible barriers in the governance of climate change adaptation have already been identified and catalogued in the academic literature. Thus far it has proven to be difficult to provide meaningful recommendations on how to deal with these barriers. In this paper we propose a different perspective, with different epistemological assumptions about cause and effect than most existing barrier studies, to analyze why adaptation is often challenging. Using the mechanismic framework, we study how the idea for an innovative “Water Plaza” was realized in the city of Rotterdam, the Netherlands. Mechanisms are understood as patterns of interaction between actors that bring about change in the governance process that lead to policy impasses. Our analysis reveals three mechanisms that explain the impasses in the first Water Plaza pilot project: the risk-innovation mechanism, the frame polarization mechanism, and the conflict infection mechanism. Only after several substantive changes in the project design, location choice, and process architecture was the project of Water Plaza's revitalized. We discuss how the short-sighted ideas about cause–effect relationships, reflected in the superficial identification of barriers, may prove to be counterproductive; if there is high uncertainty about the risks of an innovation, the solution of offering more certainty is not very helpful and could, as it happened in the case study, trigger other mechanisms, creating an even tighter deadlock. Our study also suggests that when adaptation is considered as something innovative, the chances will increase that the risk-innovation mechanism will occur. We conclude that unearthing mechanisms offers new opportunities and different types of strategic interventions in practice than most existing studies have offered.

118 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325