scispace - formally typeset
Search or ask a question
Institution

International Institute for Applied Systems Analysis

NonprofitLaxenburg, Austria
About: International Institute for Applied Systems Analysis is a nonprofit organization based out in Laxenburg, Austria. It is known for research contribution in the topics: Population & Greenhouse gas. The organization has 1369 authors who have published 5075 publications receiving 280467 citations. The organization is also known as: IIASA.


Papers
More filters
Journal ArticleDOI
TL;DR: A new ‘global land fragmentation index’ that combines a multi-attribute decision-making method with a geographic information system that outperforms the existing indices in terms of reliability as it is comprehensive, flexible, problem specific and knowledge-based.

100 citations

Posted Content
TL;DR: In this paper, the authors assessed the performance of the kerosene subsidy as an instrument of income redistribution in the state of Maharashtra and found that only 26% of the total subsidy value directly reaches households.
Abstract: Kerosene subsidies intended for Indian households have been known for their poor targeting and high fiscal costs. However, the distributional benefits to the 160 million households that use kerosene are not well understood. In this paper, the kerosene subsidy is formally assessed as an instrument of income redistribution. The subsidy incidence, progressivity and efficacy of the kerosene subsidy are calculated for the state of Maharashtra, under actual and ideal implementation conditions. The analysis shows that kerosene subsidies are regressive and of minimal financial value to poor rural households. This is in part because household quotas are based on cooking needs, but kerosene is used predominantly for lighting. In urban areas, subsidies are progressive, and provide benefits of up to 5 to 10% of household expenditure among poorer households which lack affordable access to LPG and biomass. Overall, only 26% of the total subsidy value directly reaches households. This analysis suggests that subsidies targeted only to kerosene-dependent urban areas would have a higher efficacy than broad-based subsidies.

100 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss landscape level management options for the northwest Wisconsin Pine Barrens based on both landscape ecology and the human demographics of the region using the 1990 U.S. Decennial Census.
Abstract: The effects of landscape pattern on forest ecosystems have been a recent focus in forest science. Forest managers are increasingly considering landscape level processes in their management. Natural disturbance patterns provide one baseline for such management. What has been largely ignored is the pattern of human habitation patterns (i.e., housing), on landscapes. The objective of this study is to discuss landscape level management options for the northwest Wisconsin Pine Barrens based on both landscape ecology and the human demographics of the region. Using the 1990 U.S. Decennial Census we examined current housing density, seasonal housing unit concentration, historic housing density change and projected future housing densities. These data were related to land cover and land ownership data using a GIS. Housing density increase was particularly pronounced in the central Pine Barrens, an area where seasonal housing units are common. Lakes and streams were more abundant in areas that exhibited highest growth. Within national forest lands, 80% of the area contained no housing units. In contrast, only 12% of the area in small private land ownership contained no housing. These results are integrated with previous studies of presettlement vegetation and landscape change to discuss landscape level management suggestions for the Pine Barrens.

100 citations

Journal ArticleDOI
TL;DR: In this paper, the Global Carbon Project (GCP) synthesis of the decadal CH4 budget over 2000-2012 (Saunois et al., 2016) was analyzed with a focus on quasi-decadal and inter-annual variability in CH4 emissions.
Abstract: Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4) budget over 2000-2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches. The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000-2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000-2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008-2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16-32]Tg CH4yr-1 higher methane emissions over the period 2008-2012 compared to 2002-2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002-2006 and 2008-2012 differs from one atmospheric inversion study to another. However, all top-down studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.

100 citations

Journal ArticleDOI
TL;DR: Evaluating low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States finds that existing and proposed financial incentives suggest a substantial near-term opportunity to catalyze the growth of CCS infrastructure, improve the impacts of conventional biofuels, support development of carbon-negative fuels, and satisfy low-carbon fuel policies.
Abstract: Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States.

100 citations


Authors

Showing all 1418 results

NameH-indexPapersCitations
Martin A. Nowak14859194394
Paul J. Crutzen13046180651
Andreas Richter11076948262
David G. Streets10636442154
Drew Shindell10234049481
Wei Liu102292765228
Jean-Francois Lamarque10038555326
Frank Dentener9722058666
James W. Vaupel8943434286
Keywan Riahi8731858030
Larry W. Horowitz8525328706
Robert J. Scholes8425337019
Mark A. Sutton8342330716
Brian Walsh8223329589
Börje Johansson8287130985
Network Information
Related Institutions (5)
Wageningen University and Research Centre
54.8K papers, 2.6M citations

87% related

University of Exeter
50.6K papers, 1.7M citations

85% related

Lancaster University
44.5K papers, 1.6M citations

85% related

ETH Zurich
122.4K papers, 5.1M citations

85% related

University of Maryland, College Park
155.9K papers, 7.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202360
202263
2021414
2020406
2019383
2018325