scispace - formally typeset
Search or ask a question
Institution

International Institute of Information Technology, Hyderabad

EducationHyderabad, India
About: International Institute of Information Technology, Hyderabad is a education organization based out in Hyderabad, India. It is known for research contribution in the topics: Authentication & Internet security. The organization has 2048 authors who have published 3677 publications receiving 45319 citations. The organization is also known as: IIIT Hyderabad & International Institute of Information Technology (IIIT).


Papers
More filters
Proceedings ArticleDOI
03 Apr 2017
TL;DR: This paper addresses the problem of scientific paper recommendation through a novel method which aims to combine multimodal distributed representations, which in this case are: 1. distributed representations of paper's content, and 2. distributed representation of the graph constructed from the bibliographic network.
Abstract: Scientific article recommendation problem deals with recommending similar scientific articles given a query article. It can be categorized as a content based similarity system. Recent advancements in representation learning methods have proven to be effective in modeling distributed representations in different modalities like images, languages, speech, networks etc. The distributed representations obtained using such techniques in turn can be used to calculate similarities. In this paper, we address the problem of scientific paper recommendation through a novel method which aims to combine multimodal distributed representations, which in this case are: 1. distributed representations of paper's content, and 2. distributed representation of the graph constructed from the bibliographic network. Through experiments we demonstrate that our method outperforms the state-of-the-art distributed representation methods in text and graph, by 29.6% and 20.4%, both in terms of precision and mean-average-precision respectively.

55 citations

Book ChapterDOI
24 May 2011
TL;DR: An efficient model based on the notion of "multiple constraints" is proposed and results show that the proposed model can be efficiently discovered and generates some uninteresting patterns as periodic-frequent patterns.
Abstract: Recently, temporal occurrences of the frequent patterns in a transactional database has been exploited as an interestingness criterion to discover a class of user-interest-based frequent patterns, called periodic-frequent patterns. Informally, a frequent pattern is said to be periodic-frequent if it occurs at regular intervals specified by the user throughout the database. The basic model of periodic-frequent patterns is based on the notion of "single constraints." The use of this model to mine periodic-frequent patterns containing both frequent and rare items leads to a dilemma called the "rare item problem." To confront the problem, an alternative model based on the notion of "multiple constraints" has been proposed in the literature. The periodic-frequent patterns discovered with this model do not satisfy downward closure property. As a result, it is computationally expensive to mine periodic-frequent patterns with the model. Furthermore, it has been observed that this model still generates some uninteresting patterns as periodic-frequent patterns. With this motivation, we propose an efficient model based on the notion of "multiple constraints." The periodic-frequent patterns discovered with this model satisfy downward closure property. Hence, periodic-frequent patterns can be efficiently discovered. A pattern-growth algorithm has also been discussed for the proposed model. Experimental results show that the proposed model is effective.

55 citations

Journal ArticleDOI
TL;DR: The goal in this paper is to characterize the spatial distribution of the mean AoI observed by the SD pairs by modeling them as a bipolar Poisson point process (PPP) by efficiently capturing the interference-induced coupling in the activities of theSD pairs.
Abstract: This paper considers a large-scale wireless network consisting of source-destination (SD) pairs, where the sources send time-sensitive information, termed status updates , to their corresponding destinations in a time-slotted fashion. We employ age of information (AoI) for quantifying the freshness of the status updates measured at the destination nodes under the preemptive and non-preemptive queueing disciplines with no storage facility. The non-preemptive queue drops the newly arriving updates until the update in service is successfully delivered, whereas the preemptive queue replaces the current update in service with the newly arriving update, if any. As the update delivery rate for a given link is a function of the interference field seen from the receiver, the temporal mean AoI can be treated as a random variable over space. Our goal in this paper is to characterize the spatial distribution of the mean AoI observed by the SD pairs by modeling them as a bipolar Poisson point process (PPP). Towards this objective, we first derive accurate bounds on the moments of success probability while efficiently capturing the interference-induced coupling in the activities of the SD pairs. Using this result, we then derive tight bounds on the moments as well as the spatial distribution of peak AoI (PAoI). Our numerical results verify our analytical findings and demonstrate the impact of various system design parameters on the mean PAoI.

55 citations

Journal ArticleDOI
TL;DR: This paper proposes a new anonymity preserving mobile user authentication scheme for the global mobility networks (GLOMONETs) that meets the extended anonymity requirement without compromising any standard security requirements and performs well as compared to other techniques.
Abstract: Remote user authentication without compromising user anonymity is an emerging area in the last few years. In this paper, we propose a new anonymity preserving mobile user authentication scheme for the global mobility networks (GLOMONETs). We also propose a new anonymity preserving group formation phase for roaming services in GLOMONETs that meets the extended anonymity requirement without compromising any standard security requirements. We provide the security analysis using the widely-accepted Burrows-Abadi-Needham logic and informal analysis for the proposed scheme to show that it is secure against possible well-known attacks, such as replay, man-in-the-middle, impersonation, privileged-insider, stolen smart card, ephemeral secret leakage, and password guessing attacks. In addition, the formal security verification with the help of the broadly accepted automated validation of internet security protocols and applications software simulation tool is tested on the proposed scheme and the simulation results confirm that the proposed scheme is safe. Moreover, the comparative study of the proposed scheme with other relevant schemes reveals that it performs well as compared to other techniques.

54 citations

Journal ArticleDOI
TL;DR: This paper presents a secure and efficient authentication protocol based on three-factor authentication by taking advantage of biometrics and uses a honey_list technique to protect against brute force and stolen smartcard attacks.
Abstract: The Internet of Thing (IoT) is useful for connecting and collecting variable data of objects through the Internet, which makes to generate useful data for humanity. An indispensable enabler of IoT is the wireless sensor networks (WSNs). Many environments, such as smart healthcare, smart transportation and smart grid, have adopted WSN. Nonetheless, WSNs remain vulnerable to variety of attacks because they send and receive data over public channels. Moreover, the performance of IoT enabled sensor devices has limitations since the sensors are lightweight devices and are resource constrained. To overcome these problems, many security authentication protocols for WSNs have been proposed. However, many researchers have pointed out that preventing smartcard stolen and off-line guessing attacks is an important security issue, and guessing identity and password at the same time is still possible. To address these weaknesses, this paper presents a secure and efficient authentication protocol based on three-factor authentication by taking advantage of biometrics. Meanwhile, the proposed protocol uses a honey_list technique to protect against brute force and stolen smartcard attacks. By using the honey_list technique and three factors, the proposed protocol can provide security even if two of the three factors are compromised. Considering the limited performance of the sensors, we propose an efficient protocol using only hash functions excluding the public key based elliptic curve cryptography. For security evaluation of the proposed authentication protocol, we perform informal security analysis, and Real-Or-Random (ROR) model-based and Burrows Abadi Needham (BAN) logic based formal security analysis. We also perform the formal verification using the widely-used Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation software. Besides, compared to previous researches, we demonstrate that our proposed authentication protocol for WSNs systems is more suitable and secure than others.

54 citations


Authors

Showing all 2066 results

NameH-indexPapersCitations
Ravi Shankar6667219326
Joakim Nivre6129517203
Aravind K. Joshi5924916417
Ashok Kumar Das562789166
Malcolm F. White5517210762
B. Yegnanarayana5434012861
Ram Bilas Pachori481828140
C. V. Jawahar454799582
Saurabh Garg402066738
Himanshu Thapliyal362013992
Monika Sharma362384412
Ponnurangam Kumaraguru332696849
Abhijit Mitra332407795
Ramanathan Sowdhamini332564458
Helmut Schiessel321173527
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

90% related

Facebook
10.9K papers, 570.1K citations

89% related

Google
39.8K papers, 2.1M citations

89% related

Carnegie Mellon University
104.3K papers, 5.9M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202310
202229
2021373
2020440
2019367
2018364