scispace - formally typeset
Search or ask a question
Institution

International Potato Center

FacilityLima, Peru
About: International Potato Center is a facility organization based out in Lima, Peru. It is known for research contribution in the topics: Population & Phytophthora infestans. The organization has 1036 authors who have published 1460 publications receiving 47183 citations.


Papers
More filters
Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Journal ArticleDOI
TL;DR: This work applies the definition of EIDs used in the medical and veterinary fields to botany and highlights a series of emerging plant diseases, including EIDs of cultivated and wild plants, some of which are of significant conservation concern.
Abstract: Emerging infectious diseases (EIDs) pose threats to conservation and public health. Here, we apply the definition of EIDs used in the medical and veterinary fields to botany and highlight a series of emerging plant diseases. We include EIDs of cultivated and wild plants, some of which are of significant conservation concern. The underlying cause of most plant EIDs is the anthropogenic introduction of parasites, although severe weather events are also important drivers of disease emergence. Much is known about crop plant EIDs, but there is little information about wild-plant EIDs, suggesting that their impact on conservation is underestimated. We conclude with recommendations for improving strategies for the surveillance and control of plant EIDs.

1,333 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline a set of CSA actions needed from public, private and civil society stakeholders: building evidence; increasing local institutional effectiveness; fostering coherence between climate and agricultural policies; and linking climate and agriculture financing.
Abstract: Climate-smart agriculture (CSA) is an approach to the development of agricultural systems intended to help support food security under climate change. This Perspective outlines a set of CSA actions needed from public, private and civil society stakeholders: building evidence; increasing local institutional effectiveness; fostering coherence between climate and agricultural policies; and linking climate and agricultural financing.

970 citations

Journal ArticleDOI
31 Oct 2013-Nature
TL;DR: Any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P, suggesting the provision of key services provided by these ecosystems could be negatively affected.
Abstract: The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.

667 citations

Journal ArticleDOI
Damian Smedley1, Syed Haider2, Steffen Durinck3, Luca Pandini4, Paolo Provero5, Paolo Provero4, James E. Allen6, Olivier Arnaiz7, Mohammad Awedh8, Richard Baldock9, Giulia Barbiera4, Philippe Bardou10, Tim Beck11, Andrew Blake, Merideth Bonierbale12, Anthony J. Brookes11, Gabriele Bucci4, Iwan Buetti4, Sarah W. Burge6, Cédric Cabau10, Joseph W. Carlson13, Claude Chelala14, Charalambos Chrysostomou11, Davide Cittaro4, Olivier Collin15, Raul Cordova12, Rosalind J. Cutts14, Erik Dassi16, Alex Di Genova17, Anis Djari10, Anthony Esposito18, Heather Estrella18, Eduardo Eyras19, Eduardo Eyras20, Julio Fernandez-Banet18, Simon A. Forbes1, Robert C. Free11, Takatomo Fujisawa, Emanuela Gadaleta14, Jose Manuel Garcia-Manteiga4, David Goodstein13, Kristian Gray6, José Afonso Guerra-Assunção14, Bernard Haggarty9, Dong Jin Han21, Byung Woo Han21, Todd W. Harris22, Jayson Harshbarger, Robert K. Hastings11, Richard D. Hayes13, Claire Hoede10, Shen Hu23, Zhi-Liang Hu24, Lucie N. Hutchins, Zhengyan Kan18, Hideya Kawaji, Aminah Keliet10, Arnaud Kerhornou6, Sunghoon Kim21, Rhoda Kinsella6, Christophe Klopp10, Lei Kong25, Daniel Lawson6, Dejan Lazarevic4, Ji Hyun Lee21, Thomas Letellier10, Chuan-Yun Li25, Pietro Liò26, Chu Jun Liu25, Jie Luo6, Alejandro Maass17, Jérôme Mariette10, Thomas Maurel6, Stefania Merella4, Azza M. Mohamed8, François Moreews10, Ibounyamine Nabihoudine10, Nelson Ndegwa27, Céline Noirot10, Cristian Perez-Llamas19, Michael Primig28, Alessandro Quattrone16, Hadi Quesneville10, Davide Rambaldi4, James M. Reecy24, Michela Riba4, Steven Rosanoff6, Amna A. Saddiq8, Elisa Salas12, Olivier Sallou15, Rebecca Shepherd1, Reinhard Simon12, Linda Sperling7, William Spooner29, Daniel M. Staines6, Delphine Steinbach10, Kevin R. Stone, Elia Stupka4, Jon W. Teague1, Abu Z. Dayem Ullah14, Jun Wang25, Doreen Ware29, Marie Wong-Erasmus, Ken Youens-Clark29, Amonida Zadissa6, Shi Jian Zhang25, Arek Kasprzyk8, Arek Kasprzyk4 
TL;DR: The latest version of the BioMart Community Portal comes with many new databases that have been created by the ever-growing community and comes with better support and extensibility for data analysis and visualization tools.
Abstract: The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.

664 citations


Authors

Showing all 1040 results

NameH-indexPapersCitations
Jari P. T. Valkonen6432812936
Anthony Bebbington5724713362
Sven Wunder5719119645
Donald C. Cole5227210626
Robert J. Hijmans5013140315
Josef Glössl49977358
Roger A. C. Jones493259217
Rebecca Nelson491528388
Paul Winters472216916
Laura F. Salazar461756692
M. Monica Giusti421407156
Karen A. Garrett411556182
Sven-Erik Jacobsen39925869
David J. Midmore362094077
Luis E. Rodriguez-Saona361314719
Network Information
Related Institutions (5)
Agricultural Research Service
58.6K papers, 2.1M citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

86% related

United States Department of Agriculture
90.8K papers, 3.4M citations

86% related

University of Hohenheim
16.4K papers, 567.3K citations

86% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
202198
2020113
201983
201863
201790