scispace - formally typeset
Search or ask a question

Showing papers by "International School for Advanced Studies published in 2016"


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations


Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations


Journal ArticleDOI
TL;DR: The first Gaia data release, Gaia DR1 as discussed by the authors, consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Abstract: Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data.

2,174 citations


Journal ArticleDOI
Kurt Lejaeghere1, Gustav Bihlmayer2, Torbjörn Björkman3, Torbjörn Björkman4, Peter Blaha5, Stefan Blügel2, Volker Blum6, Damien Caliste7, Ivano E. Castelli8, Stewart J. Clark9, Andrea Dal Corso10, Stefano de Gironcoli10, Thierry Deutsch7, J. K. Dewhurst11, Igor Di Marco12, Claudia Draxl13, Claudia Draxl14, Marcin Dulak15, Olle Eriksson12, José A. Flores-Livas11, Kevin F. Garrity16, Luigi Genovese7, Paolo Giannozzi17, Matteo Giantomassi18, Stefan Goedecker19, Xavier Gonze18, Oscar Grånäs20, Oscar Grånäs12, E. K. U. Gross11, Andris Gulans13, Andris Gulans14, Francois Gygi21, D. R. Hamann22, P. J. Hasnip23, Natalie Holzwarth24, Diana Iusan12, Dominik B. Jochym25, F. Jollet, Daniel M. Jones26, Georg Kresse27, Klaus Koepernik28, Klaus Koepernik29, Emine Kucukbenli10, Emine Kucukbenli8, Yaroslav Kvashnin12, Inka L. M. Locht12, Inka L. M. Locht30, Sven Lubeck13, Martijn Marsman27, Nicola Marzari8, Ulrike Nitzsche28, Lars Nordström12, Taisuke Ozaki31, Lorenzo Paulatto32, Chris J. Pickard33, Ward Poelmans1, Matt Probert23, Keith Refson25, Keith Refson34, Manuel Richter29, Manuel Richter28, Gian-Marco Rignanese18, Santanu Saha19, Matthias Scheffler14, Matthias Scheffler35, Martin Schlipf21, Karlheinz Schwarz5, Sangeeta Sharma11, Francesca Tavazza16, Patrik Thunström5, Alexandre Tkatchenko36, Alexandre Tkatchenko14, Marc Torrent, David Vanderbilt22, Michiel van Setten18, Veronique Van Speybroeck1, John M. Wills37, Jonathan R. Yates26, Guo-Xu Zhang38, Stefaan Cottenier1 
25 Mar 2016-Science
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Abstract: The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

1,141 citations


Journal ArticleDOI
Nabila Aghanim1, Monique Arnaud2, M. Ashdown3, J. Aumont1  +291 moreInstitutions (73)
TL;DR: In this article, the authors present the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties.
Abstract: This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n_s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK^2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.

932 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +301 moreInstitutions (72)
TL;DR: In this paper, the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario were studied, and it was shown that the density of DE at early times has to be below 2% of the critical density, even when forced to play a role for z < 50.
Abstract: We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.

816 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +306 moreInstitutions (75)
TL;DR: In this article, the Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG).
Abstract: The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators – separable template-fitting (KSW), binned, and modal – we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone ƒlocalNL = 2.5 ± 5.7, ƒequilNL= -16 ± 70, , and ƒorthoNL = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain ƒlocalNL = 0.8 ± 5.0, ƒequilNL= -4 ± 43, and ƒorthoNL = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the “look elsewhere” effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be

652 citations


Journal ArticleDOI
TL;DR: A kinetic theory of elementary excitations is proposed and an exact expression for the expectation values of the charge currents in a generic stationary state is unveiled for the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain.
Abstract: We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

639 citations


Journal ArticleDOI
TL;DR: In this paper, the axion potential, its mass and its coupling to photons were reconstructed with percent precision using first-principle QCD computations with uncertainties smaller than ten percent.
Abstract: We show how several properties of the QCD axion can be extracted at high precision using only first principle QCD computations. By combining NLO results obtained in chiral perturbation theory with recent Lattice QCD results the full axion potential, its mass and the coupling to photons can be reconstructed with percent precision. Axion couplings to nucleons can also be derived reliably, with uncertainties smaller than ten percent. The approach presented here allows the precision to be further improved as uncertainties on the light quark masses and the effective theory couplings are reduced. We also compute the finite temperature dependence of the axion potential and its mass up to the crossover region. For higher temperature we point out the unreliability of the conventional instanton approach and study its impact on the computation of the axion relic abundance.

557 citations


Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, M. I. R. Alves3  +281 moreInstitutions (69)
TL;DR: In this paper, the authors consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical components maps.
Abstract: Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

515 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +289 moreInstitutions (73)
TL;DR: The most significant measurement of the cosmic microwave background (CMB) lensing potential at a level of 40σ using temperature and polarization data from the Planck 2015 full-mission release was presented in this article.
Abstract: We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

Journal ArticleDOI
R. Adam1, Nabila Aghanim2, M. Ashdown3, J. Aumont2  +218 moreInstitutions (58)
TL;DR: In this paper, the authors investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data and find that the universe is ionized at less than the 10% level at redshifts above z ≃ 10.8.
Abstract: We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit ΛCDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth τ = 0.058 ± 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Δz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z ≃ 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, Monique Arnaud4  +298 moreInstitutions (69)
TL;DR: In this article, the authors exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C_l^(EE) and C_ l^(BB) over the multipole range 40
Abstract: The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C_l^(EE) and C_l^(BB) over the multipole range 40

Journal ArticleDOI
TL;DR: It is shown that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms, and mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.
Abstract: Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.

Journal ArticleDOI
Nabila Aghanim1, M. Ashdown2, J. Aumont1, Carlo Baccigalupi3  +215 moreInstitutions (56)
TL;DR: In this paper, the authors describe the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales.
Abstract: This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016 The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination These all give fully consistent results A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0055 ± 0009 In a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization

Journal ArticleDOI
TL;DR: In this paper, the counting of the micro states of supersymmetric asymptotically AdS black holes in terms of a holographically dual eld theory is addressed.
Abstract: This paper addresses a long standing problem, the counting of the microstates of supersymmetric asymptotically AdS black holes in terms of a holographically dual eld theory. We focus on a class of asymptotically AdS4 static black holes preserving two real supercharges which are dual to a topologically twisted deformation of the ABJM theory. We evaluate in the large N limit the topologically twisted index of the ABJM theory and we show that it correctly reproduces the entropy of the AdS4 black holes. An extremization of the index with respect to a set of chemical potentials is required. We interpret it as the selection of the exact R-symmetry of the superconformal quantum mechanics describing the horizon of the black hole.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +279 moreInstitutions (69)
TL;DR: The impact of primordial magnetic fields (PMFs) on the CMB temperature and polarization spectra was investigated in this paper, with different bounds depending on the specific effect that is analysed.
Abstract: We predict and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs derived from different combinations of Planck data products, depending on the specific effect that is analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss, with different bounds depending on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1Mpc < 4:4 nG (where B1Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95 % confidence level, assuming zero helicity, and B1Mpc < 5:6 nG when we consider a maximally helical field. For nearly scaleinvariant PMFs we obtain B1Mpc < 2:1 nG and B1Mpc < 0:7 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1Mpc < 2:8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1Mpc < 4:5 nG, whereas the the compensated-scalar bispectrum gives B1Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1Mpc < 1380 nG. In our final analysis, we consider the harmonic-space correlations produced by Alfv´ en waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, M. Arnaud3  +226 moreInstitutions (54)
TL;DR: In this paper, the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, was evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations".
Abstract: Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10′ FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvenic or sub-Alfvenic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

Journal ArticleDOI
TL;DR: It is shown by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces—monoatomic step edges.
Abstract: Single-atom catalysts maximize the utilization of supported precious metals by exposing every single metal atom to reactants. To avoid sintering and deactivation at realistic reaction conditions, single metal atoms are stabilized by specific adsorption sites on catalyst substrates. Here we show by combining photoelectron spectroscopy, scanning tunnelling microscopy and density functional theory calculations that Pt single atoms on ceria are stabilized by the most ubiquitous defects on solid surfaces--monoatomic step edges. Pt segregation at steps leads to stable dispersions of single Pt(2+) ions in planar PtO4 moieties incorporating excess O atoms and contributing to oxygen storage capacity of ceria. We experimentally control the step density on our samples, to maximize the coverage of monodispersed Pt(2+) and demonstrate that step engineering and step decoration represent effective strategies for understanding and design of new single-atom catalysts.

Journal ArticleDOI
Nabila Aghanim1, M. Arnaud2, M. Ashdown, J. Aumont1  +248 moreInstitutions (61)
TL;DR: In this article, the authors constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite.
Abstract: We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite These reconstructed y-maps are delivered as part of the Planck 2015 release The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales Specific masks are defined to minimize foreground residuals and systematics Using these masks, we compute the y-map angular power spectrum and higher order statistics From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, Monique Arnaud4  +281 moreInstitutions (64)
TL;DR: In this article, the authors describe the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization.
Abstract: This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of TCMB = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 μK), which is approximatively 1σ higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.

Journal ArticleDOI
TL;DR: In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials as mentioned in this paper.
Abstract: In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental...

Journal ArticleDOI
TL;DR: In this article, a new numerical code was proposed to model the transport of cosmic ray nuclei in the galaxy by means of a new spatial distribution of the diffusion coefficient, and the main secondary/primary ratios (B/C, N/O and sub-Fe/Fe) consistently match the available observations.
Abstract: We model the transport of cosmic ray nuclei in the galaxy by means of a new numerical code. At variance with previous numerical models, ours accounts for a generic spatial distribution of the diffusion coefficient. We found that in the case of radially uniform diffusion, the main secondary/primary ratios (B/C, N/O and sub-Fe/Fe) and the modulated antiproton spectrum consistently match the available observations. Convection and re-acceleration do not seem to be required in the energy range that we consider: 1≤E≤103 GeV/nucleon. We generalize these results, accounting for radial dependence of the diffusion coefficient, which is assumed to trace that of the cosmic ray sources. While this does not affect the prediction of secondary/primary ratios, the simulated longitude profile of the diffuse γ-ray emission is significantly different from that for the uniform case and may agree with EGRET measurements without requiring invoking ad hoc assumptions on the galactic gas density distribution.

Journal ArticleDOI
TL;DR: In this paper, the authors enumerate the cases in 2D conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular Hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight.
Abstract: We enumerate the cases in 2d conformal field theory where the logarithm of the reduced density matrix (the entanglement or modular Hamiltonian) may be written as an integral over the energy-momentum tensor times a local weight. These include known examples and new ones corresponding to the time-dependent scenarios of a global and local quench. In these latter cases the entanglement Hamiltonian depends on the momentum density as well as the energy density. In all cases the entanglement spectrum is that of the appropriate boundary CFT. We emphasize the role of boundary conditions at the entangling surface and the appearance of boundary entropies as universal O(1) terms in the entanglement entropy.

Journal ArticleDOI
TL;DR: In this article, an imaginary time path integral approach to the quench dynamics of conformal field theories is presented, which can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both global and local quenches.
Abstract: We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both global and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.


Journal ArticleDOI
TL;DR: In this paper, the De Giorgi-Nash-Moser theory was extended to nonlocal, possibly degenerate integro-differential operators, and they extended it to non-local integro differential operators.
Abstract: We extend the De Giorgi–Nash–Moser theory to nonlocal, possibly degenerate integro-differential operators.

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, Monique Arnaud4  +304 moreInstitutions (71)
TL;DR: In this article, the authors presented foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization, and compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.
Abstract: We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales l ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with l< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55′ pixels, and between 4.5 and 6.1μK averaged over pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum, including for polarization E-modes. Moreover, excellent agreement is found regarding the lensing B-mode power spectrum, both internally among the various component separation codes and with the best-fit Planck 2015 Λ cold dark matter model.

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of iridium oxide was investigated using synchrotron-based X-ray photoemission and absorption spectroscopies with theoretical calculations.
Abstract: Iridium-based materials are among the most active and stable electrocatalysts for the oxygen evolution reaction. Amorphous iridium oxide structures are found to be more active than their crystalline counterparts. Herein, we combine synchrotron-based X-ray photoemission and absorption spectroscopies with theoretical calculations to investigate the electronic structure of Ir metal, rutile-type IrO2, and an amorphous IrOx. Theory and experiment show that while the Ir 4f line shape of Ir metal is well described by a simple Doniach–Sunjic function, the peculiar line shape of rutile-type IrO2 requires the addition of a shake-up satellite 1 eV above the main line. In the catalytically more active amorphous IrOx, we find that additional intensity appears in the Ir 4f spectrum at higher binding energy when compared with rutile-type IrO2 along with a pre-edge feature in the O K-edge. We identify these additional features as electronic defects in the anionic and cationic frameworks, namely, formally OI− and IrIII, which may explain the increased activity of amorphous IrOx electrocatalysts. We corroborate our findings by in situ X-ray diffraction as well as in situ X-ray photoemission and absorption spectroscopies. Copyright © 2015 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: This investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that is identified as O 2p hole states forming in conjunction with Ir(III) and these electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphously irium oxides relative to their crystalline counterparts.
Abstract: Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate understanding of the electronic structure of iridium oxide surfaces, we have combined synchrotron-based X-ray photoemission and absorption spectroscopies with ab initio calculations. Our investigation reveals a pre-edge feature in the O K-edge of highly catalytically active X-ray amorphous iridium oxides that we have identified as O 2p hole states forming in conjunction with IrIII. These electronic defects in the near-surface region of the anionic and cationic framework are likely critical for the enhanced activity of amorphous iridium oxides relative to their crystalline counterparts.