scispace - formally typeset
Search or ask a question
Institution

International School for Advanced Studies

EducationTrieste, Friuli-Venezia Giulia, Italy
About: International School for Advanced Studies is a education organization based out in Trieste, Friuli-Venezia Giulia, Italy. It is known for research contribution in the topics: Galaxy & Dark matter. The organization has 3751 authors who have published 13433 publications receiving 588454 citations. The organization is also known as: SISSA & Scuola Internazionale Superiore di Studi Avanzati.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the full moduli space of a class of = 1 supersymmetric gauge theories is studied and many algebro-geometric properties of the master space such as when is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries.
Abstract: The full moduli space of a class of = 1 supersymmetric gauge theories is studied. For gauge theories living on a stack of D3-branes at Calabi-Yau singularities , is a combination of the mesonic and baryonic branches. In consonance with the mathematical literature, the single brane moduli space is called the master space . Illustrating with a host of explicit examples, we exhibit many algebro-geometric properties of the master space such as when is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries. In conjunction with the plethystic programme, we investigate the counting of BPS gauge invariants, baryonic and mesonic, using the geometry of and show how its refined Hilbert series not only engenders the generating functions for the counting but also beautifully encode ``hidden'' global symmetries of the gauge theory which manifest themselves as symmetries of the complete moduli space for N number of branes.

180 citations

Journal ArticleDOI
TL;DR: It is shown how to cast the problem of swimming in the language of control theory, prove global controllability (which implies that the three-sphere swimmer can indeed swim), and propose a numerical algorithm to compute optimal strokes (which turn out to be suitably defined sub-Riemannian geodesics).
Abstract: Swimming, i.e., being able to advance in the absence of external forces by performing cyclic shape changes, is particularly demanding at low Reynolds numbers. This is the regime of interest for micro-organisms and micro- or nano-robots. We focus in this paper on a simple yet representative example: the three-sphere swimmer of Najafi and Golestanian (Phys. Rev. E, 69, 062901–062904, 2004). For this system, we show how to cast the problem of swimming in the language of control theory, prove global controllability (which implies that the three-sphere swimmer can indeed swim), and propose a numerical algorithm to compute optimal strokes (which turn out to be suitably defined sub-Riemannian geodesics).

179 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the evidence for very hard low energy spectra during the prompt phase of Gamma-Ray Bursts (GRB), and examine the spectral evolution of GRB 980306 together with the detailed analysis of some other bursts already presented in the literature.
Abstract: We consider the evidence for very hard low energy spectra during the prompt phase of Gamma-Ray Bursts (GRB). In particular we examine the spectral evolution of GRB 980306 together with the detailed analysis of some other bursts already presented in the literature (GRB 911118, GRB 910807, GRB 910927 and GRB 970111), and check for the significance of their hardness (i.e. extremely steep spectral slopes below the EFE peak) by applying dierent tests. These bursts, detected by the Burst And Transient Source Experiment (BATSE) in the30 keV-2 MeV energy range, are suciently bright to allow time resolved spectral studies on time intervals of the order of tenths of a second. We discuss the hard spectra of these bursts and their evolution in the context of several non-thermal emission models, which all appear inadequate to account for these cases. The extremely hard spectra, which are detected in the early part of the BATSE light curve, are also compared with a black body spectral model: the resulting fits are remarkably good, except for an excess at high energies (in several cases) which could be simply accounted for by the presence of a supra-thermal component. The findings on the possible thermal character of the evolving spectrum and the implications on the GRB physical scenario are considered in the frameworks of photospheric models for a fireball which is becoming optically thin, and of Compton drag models, in which the fireball boosts "ambient" seed photons by its own bulk motion. Both models, according to simple estimates, appear to be qualitatively and quantitatively consistent with the found spectral characteristics, although their possible caveats are discussed.

179 citations

Journal ArticleDOI
TL;DR: Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude, and a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes is uncovered.
Abstract: Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.

179 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the entanglement entropy for holographic field theories in finite volume and showed that the Araki-Lieb inequality is saturated for large enough subregions, implying that the thermal entropy can be recovered from the knowledge of the region and its complement.
Abstract: We consider the entanglement entropy for holographic field theories in finite volume. We show that the Araki-Lieb inequality is saturated for large enough subregions, implying that the thermal entropy can be recovered from the knowledge of the region and its complement. We observe that this actually is forced upon us in holographic settings due to non-trivial features of the causal wedges associated with a given boundary region. In the process, we present an infinite set of extremal surfaces in Schwarzschild-AdS geometry anchored on a given entangling surface. We also offer some speculations regarding the homology constraint required for computing holographic entanglement entropy.

179 citations


Authors

Showing all 3802 results

NameH-indexPapersCitations
Sabino Matarrese155775123278
G. de Zotti154718121249
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
Carlo Baccigalupi137518104722
L. Toffolatti13637695529
Michele Parrinello13363794674
Marzio Nessi129104678641
Luigi Danese12839492073
Lidia Smirnova12794475865
Michele Pinamonti12684669328
David M. Alexander12565260686
Davide Maino12441088117
Dipak Munshi12436584322
Peter Onyisi11469460392
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

88% related

École Polytechnique
39.2K papers, 1.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202279
2021656
2020714
2019712
2018622