scispace - formally typeset
Search or ask a question
Institution

International School for Advanced Studies

EducationTrieste, Friuli-Venezia Giulia, Italy
About: International School for Advanced Studies is a education organization based out in Trieste, Friuli-Venezia Giulia, Italy. It is known for research contribution in the topics: Galaxy & Dark matter. The organization has 3751 authors who have published 13433 publications receiving 588454 citations. The organization is also known as: SISSA & Scuola Internazionale Superiore di Studi Avanzati.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors derived the mass model of the Milky Way (MW), crucial for direct and indirect detection, using recent data and a cored dark matter (DM) halo profile, which is favoured by studies of external galaxies.
Abstract: We derive the mass model of the Milky Way (MW), crucial for Dark Matter (DM) direct and indirect detection, using recent data and a cored dark matter (DM) halo profile, which is favoured by studies of external galaxies. The method used consists in fitting a spherically symmetric model of the Galaxy with a Burkert DM halo profile to available data: MW terminal velocities in the region inside the solar circle, circular velocity as recently estimated from maser star forming regions at intermediate radii, and velocity dispersions of stellar halo tracers for the outermost Galactic region. The latter are reproduced by integrating the Jeans equation for every modeled mass distribution, and by allowing for different velocity anisotropies for different tracer populations. For comparison we also consider a Navarro-Frenk-White profile. We find that the cored profile is the preferred one, with a shallow central density of ρH ~ 4 × 107M☉/kpc3 and a large core radius RH ~ 10 kpc, as observed in external spirals and in agreement with the mass model underlying the Universal Rotation Curve of spirals. We describe also the derived model uncertainties, which are crucially driven by the poorly constrained velocity dispersion anisotropies of halo tracers. The emerging cored DM distribution has implications for the DM annihilation angular profile, which is much less boosted in the Galactic center direction with respect to the case of the standard ΛCDM, NFW profile. Using the derived uncertainties we discuss finally the limitations and prospects to discriminate between cored and cusped DM profile with a possible observed diffuse DM annihilation signal. The present mass model aims to characterize the present-day description of the distribution of matter in our Galaxy, which is needed to frame current crucial issues of Cosmology, Astrophysics and Elementary Particles.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schrodinger or stochastic (Monte Carlo) dynamics are presented.
Abstract: Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schrodinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schrodinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.

271 citations

Journal ArticleDOI
TL;DR: In this article, the authors present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra-cluster medium (ICM).
Abstract: We present cosmological hydrodynamical simulations of galaxy clusters aimed at studying the process of metal enrichment of the intra-cluster medium (ICM). These simulations have been performed by implementing a detailed model of chemical evolution in the TREE-PM+SPM GADGET-2 code. This model allows us to follow the metal release from Type II supernovae (SNII), Type Ia supernovae (SNIa) and asymptotic giant branch (AGB) stars by properly accounting for the lifetimes of stars of different mass, as well as to change the stellar initial mass function (IMF), the lifetime function and the stellar yields. As such, our implementation of chemical evolution represents a powerful instrument to follow the cosmic history of metal production. The simulations presented here have been performed with the twofold aim of checking numerical effects, as well as the impact of changing the model of chemical evolution and the efficiency of stellar feedback. In general, we find that the distribution of metals produced by SNII is more clumpy than for the product of low-mass stars, as a consequence of the different time-scales over which they are released. Using a standard Salpeter IMF produces a radial profile of iron abundance which is in fairly good agreement with observations available out to ≃0.6R 500 . This result holds almost independent of the numerical scheme adopted to distribute metals around star-forming regions. The mean age of enrichment of the ICM corresponds to redshift z ∼ 0.5, which progressively increases outside the virial region. Increasing resolution, we improve the description of a diffuse high-redshift enrichment of the inter-galactic medium (IGM). This turns into a progressively more efficient enrichment of the cluster outskirts, while having a smaller impact at R ≤ 0.5R 500 . As for the effect of the model of chemical evolution, we find that changing the IMF has the strongest impact. Using an IMF, which is top-heavier than the Salpeter one, provides a larger iron abundance, possibly in excess of the observed level, also significantly increasing the [O/Fe] relative abundance. Our simulations always show an excess of low-redshift star formation and, therefore, of the abundance of oxygen in central cluster regions, at variance with observations. This problem is not significantly ameliorated by increasing the efficiency of the stellar feedback.

271 citations

Journal ArticleDOI
09 May 2007-PLOS ONE
TL;DR: The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features, suggesting that the spontaneously occurring electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.
Abstract: Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.

271 citations

Journal ArticleDOI
TL;DR: In this paper, a doubled formalism for the bosonic sector of the maximal supergravities is introduced, in which a Hodge dual potential is introduced for each bosonic field, and the equations of motion can then be formulated as a twisted self-duality condition on the total field strength.

271 citations


Authors

Showing all 3802 results

NameH-indexPapersCitations
Sabino Matarrese155775123278
G. de Zotti154718121249
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
Carlo Baccigalupi137518104722
L. Toffolatti13637695529
Michele Parrinello13363794674
Marzio Nessi129104678641
Luigi Danese12839492073
Lidia Smirnova12794475865
Michele Pinamonti12684669328
David M. Alexander12565260686
Davide Maino12441088117
Dipak Munshi12436584322
Peter Onyisi11469460392
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

88% related

École Polytechnique
39.2K papers, 1.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202279
2021656
2020714
2019712
2018622