scispace - formally typeset
Search or ask a question
Institution

IPG Photonics

About: IPG Photonics is a based out in . It is known for research contribution in the topics: Laser & Fiber laser. The organization has 903 authors who have published 1241 publications receiving 63339 citations.


Papers
More filters
Journal ArticleDOI
Christian Brouder1
TL;DR: In this article, a nonlinear Born expansion is given, and renormalization is used to partly remove the secular terms of the perturbative expansion, leading to nonperturbative results.
Abstract: Rooted trees have been used to calculate the solution of nonlinear flow equations and Runge–Kutta methods. More recently, rooted trees have helped systematizing the algebra underlying renormalization in quantum field theories. The Butcher group and B-series establish a link between these two approaches to rooted trees. On the one hand, this link allows for an alternative representation of the algebra of renormalization, leading to nonperturbative results. On the other hand, it helps to renormalize singular flow equations. The usual approach is extended here to nonlinear partial differential equations. A nonlinear Born expansion is given, and renormalization is used to partly remove the secular terms of the perturbative expansion.

137 citations

Journal ArticleDOI
06 Feb 2013-PLOS ONE
TL;DR: The most EPS-depleted mutant is demonstrated for the first time that cyanobacterial EPS directly operate in cell protection against NaCl, CoCl2, CdSO4 and Fe-starvation.
Abstract: Little is known about the production of exopolysaccharides (EPS) in cyanobacteria, and there are no genetic and physiological evidences that EPS are involved in cell protection against the frequently encountered environmental stresses caused by salt and metals. We studied four presumptive EPS production genes, sll0923, sll1581, slr1875 and sll5052, in the model cyanobacterium Synechocystis PCC6803, which produces copious amounts of EPS attached to cells (CPS) and released in the culture medium (RPS) as shown here. We show that sll0923, sll1581, slr1875 and sll5052 are all dispensable to the growth of all corresponding single and double deletion mutants in absence of stress. Furthermore, we report that sll0923, sll1581 and slr1875 unambiguously operate in the production of both CPS and RPS. Both sll1581 and slr1875 are more important than sll0923 for CPS production, whereas the contrary is true for RPS production. We show that the most EPS-depleted mutant, doubly deleted for sll1581 and slr1875, lacks the EPS mantle that surrounds WT cells and sorbs iron in their vicinity. Using this mutant, we demonstrate for the first time that cyanobacterial EPS directly operate in cell protection against NaCl, CoCl2, CdSO4 and Fe-starvation. We believe that our EPS-depleted mutants will be useful tools to investigate the role of EPS in cell-to-cell aggregation, biofilm formation, biomineralization and tolerance to environmental stresses. We also suggest using the fast sedimenting mutants as biotechnological cell factories to facilitate the otherwise expensive harvest of the producer cell biomass and/or its separation from products excreted in the growth media.

136 citations

Journal ArticleDOI
TL;DR: The fundamental issue of reconstructing a porous medium is examined anew in this paper, thanks to a sample of low-porosity Fontainebleau sandstone that has been analyzed by computed microtomography and the fact that the numerical sample percolates despite its low porosity.
Abstract: The fundamental issue of reconstructing a porous medium is examined anew in this paper, thanks to a sample of low-porosity Fontainebleau sandstone that has been analyzed by computed microtomography. Various geometric properties are determined on the experimental sample. A statistical property, namely, the probability density of the covering radius, is determined. This is used in order to reconstruct a porous medium by means of a Poissonian generation of polydisperse spheres. In a second part, the properties of the real experimental sample and of the reconstructed one are compared. The most important success of the present reconstruction technique is the fact that the numerical sample percolates despite its low porosity. Moreover, other geometrical features and conductivity are found to be in good agreement.

136 citations

Journal ArticleDOI
TL;DR: In this paper, random three-dimensional fracture networks are generated according to various rules, such as the number of 3D blocks, percolation thresholds, and cyclomatic numbers with respect to fracture shapes and densities.
Abstract: Random three-dimensional fracture networks are generated according to various rules. Geometrical and topological features such as the number of three-dimensional blocks, the percolation thresholds and the cyclomatic numbers are studied with respect to fracture shapes and densities. All the results could be successfully interpreted by means of the excluded volume.

135 citations

Journal ArticleDOI
TL;DR: In this article, the authors have determined the omphacites δ18O and the abundance, δD and δ13C of hydrous and carbonaceous compounds present in whole rocks which are believed to trace the residual phases of what was mobilized in the original rocks during subduction.

135 citations


Authors

Showing all 903 results

NameH-indexPapersCitations
Claude J. Allègre10632735092
Paul Tapponnier9929442855
Francesco Mauri8535269332
Barbara Romanowicz6728414950
Geoffrey C. P. King6415717177
Yi-Gang Xu6427114292
Jérôme Gaillardet6319914878
François Guyot6129212444
Georges Calas6026610901
Ari P. Seitsonen5921245684
Michele Lazzeri5814057079
Bernard Bourdon581189962
Gianreto Manatschal5620010063
Nikolai M. Shapiro5615415508
Guillaume Morin551567218
Network Information
Related Institutions (5)
United States Naval Research Laboratory
45.4K papers, 1.5M citations

82% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

80% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

79% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

78% related

Sandia National Laboratories
46.7K papers, 1.4M citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202121
202025
201936
201839
201730
201652