scispace - formally typeset
Search or ask a question
Institution

IPG Photonics

About: IPG Photonics is a based out in . It is known for research contribution in the topics: Laser & Fiber laser. The organization has 903 authors who have published 1241 publications receiving 63339 citations.


Papers
More filters
Patent
Vijay Kancharla1
29 Apr 2015
TL;DR: In this article, the laser beam is focused and directed at the amorphous metal material with a beam spot size of about 30 microns or less, and the focused laser beam and the material are moved relative to each other at a speed greater than about 18 inches per second.
Abstract: Laser cutting systems and methods are used to cut amorphous metal materials, such as thin amorphous metal ribbons or foils, with a relatively high speed. Embodiments of laser cutting systems and methods described herein also allow cutting with reduced crystallization, and thus reduced increases in thickness, at the cut edges and with reduced cracks or other cutting defects at the cut edges. A fiber laser, such as an Ytterbium fiber laser, is used to generate a laser beam with a power level greater than about 50 W. The laser beam is focused and directed at the amorphous metal material with a beam spot size of about 30 microns or less. The focused laser beam and the amorphous metal material are moved relative to each other at a speed greater than about 18 inches per second such that the focused laser beam cuts the amorphous metal material.

4 citations

Patent
15 Jul 2016
TL;DR: A universal fiber optic connector includes a housing and a fiber attachment element configured to attach an optical fiber in the housing as mentioned in this paper, where the attachment element positions the optical fiber such that an end face of the fiber is held within the housing.
Abstract: A universal fiber optic connector includes a housing and a fiber attachment element configured to attach an optical fiber in the housing. The attachment element positions the optical fiber such that an end face of the fiber is held within the housing. The fiber end face is positioned such that a beam of light emerging from the fiber end face has a defined wavefront located at a specified interface.

4 citations

Patent
09 Jan 2013
TL;DR: In this article, a method for converting the optical frequency of a single-mode, single-frequency laser source was proposed, where the seed laser was a diode laser configured to adjust the frequency in response to controllable pump current variations.
Abstract: A method for converting the optical frequency of a single-mode, single-frequency laser source includes generating a linearly-polarized single-frequency seed laser signal at a fundamental frequency; amplifying the seed laser signal in an optical amplifier; coupling the amplified signal into an external cavity formed by at least two mirrors, one of the mirrors being installed on a piezo actuator; enhancing the coupled signal inside the external cavity by locking a resonance frequency of the cavity to the frequency of the seed laser by continuously adjusting the optical length of the cavity with the piezo actuator; and converting the frequency of the enhanced signal using a non-linear crystal placed in a beam path inside the cavity. A method for converting the optical frequency of a single-mode, single-frequency laser source, includes generating a linearly polarized single-frequency seed laser signal at a fundamental frequency, the seed laser being a diode laser configured to adjust the frequency in response to controllable pump current variations; amplifying the seed laser signal in an optical amplifier; coupling the amplified signal into an external cavity formed by at least two mirrors; enhancing the coupled signal inside the external cavity by locking the frequency of the diode seed laser to a resonance frequency of the cavity by continuously adjusting the pump current of the diode seed laser; and converting the frequency of the enhanced signal using a non-linear crystal placed in a beam path inside the cavity.

4 citations

Patent
03 Jun 2014
TL;DR: In this paper, a multimode fiber oscillator is configured with MM active fiber doped with, light emitters, a pair of MM passive fibers spliced to respective opposite ends of the active fiber, and a plurality of MM fiber Bragg gratings written in respective cores of the passive fibers to provide a resonant cavity.
Abstract: A multimode ("MM") fiber oscillator is configured with MM active fiber doped with, light emitters, a pair of MM passive fibers spliced to respective opposite ends of the MM active fiber, and a plurality of MM fiber Bragg gratings ("FBG") written in respective cores of the MM passive fibers to provide a resonant cavity. The passive and active fibers are configured with respective cores which are dimensioned with respective diameters matching one another and substantially identical numerical apertures.

4 citations

Patent
01 Jul 2015
TL;DR: In this article, a quasi-continuous wave fiber laser source is configured with a film irradiating pulsed beam, and the pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2).
Abstract: The inventive system for crystallizing an amorphous silicon (a-Si) film is configured with a quasi-continuous wave fiber laser source operative to emit a film irradiating pulsed beam. The fiber laser source is operative to emit a plurality of non-repetitive pulses incident on the a-Si. In particular, the fiber laser is operative to emit multiple discrete packets of film irradiating light at a burst repetition rate (BRR), and a plurality of pulses within each packet emitted at a pulse repetition rate (PRR) which is higher than the BRR. The pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2) and packet energy sufficient to provide transformation of a-Si to polysilicon (p-Si) at each location of the film which is exposed to at least one packets.

4 citations


Authors

Showing all 903 results

NameH-indexPapersCitations
Claude J. Allègre10632735092
Paul Tapponnier9929442855
Francesco Mauri8535269332
Barbara Romanowicz6728414950
Geoffrey C. P. King6415717177
Yi-Gang Xu6427114292
Jérôme Gaillardet6319914878
François Guyot6129212444
Georges Calas6026610901
Ari P. Seitsonen5921245684
Michele Lazzeri5814057079
Bernard Bourdon581189962
Gianreto Manatschal5620010063
Nikolai M. Shapiro5615415508
Guillaume Morin551567218
Network Information
Related Institutions (5)
United States Naval Research Laboratory
45.4K papers, 1.5M citations

82% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

80% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

79% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

78% related

Sandia National Laboratories
46.7K papers, 1.4M citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202121
202025
201936
201839
201730
201652