scispace - formally typeset
Search or ask a question
Institution

Islamic Azad University

EducationTehran, Iran
About: Islamic Azad University is a education organization based out in Tehran, Iran. It is known for research contribution in the topics: Population & Catalysis. The organization has 83635 authors who have published 113437 publications receiving 1275049 citations. The organization is also known as: Azad University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel structure for a boost dc/dc converter based on the SEPIC converter, which employs a coupled inductor with a voltage multiplier cell in this structure to improve its high voltage gain and efficiency.
Abstract: This paper proposes a novel structure for a boost dc/dc converter. The presented structure is based on the SEPIC converter. Therefore, the converter benefits from various advantages that the SEPIC converter has such as continuous input current. Also, high voltage conversion gain and higher efficiency are the other advantages of the proposed converter. Input current continuity makes the presented converter suitable for renewable energy sources. Employing a coupled inductor with a voltage multiplier cell in this structure increases its high voltage gain. In addition, lower voltage stress on the main power switch leads to higher conversion efficiency. Also, the energy stored in the leakage inductance of the coupled inductor is recycled, which improves the efficiency more. The steady state analysis and the design of the converter are discussed thoroughly. Experimental results are provided by a 220 W prototype. The results verify the proper operation and feasibility of the presented converter.

165 citations

Journal ArticleDOI
TL;DR: In this article, the effects of various weight percentages and Reynolds numbers on the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 by using finite volume method (FVM).
Abstract: In recent years, the study of rheological behavior and heat transfer of nanofluids in the industrial equipment has become widespread among the researchers and their results have led to great advancements in this field. In present study, the laminar flow and heat transfer of water/functional multi-walled carbon nanotube nanofluid have been numerically investigated in weight percentages of 0.00, 0.12 and 0.25 and Reynolds numbers of 1–150 by using finite volume method (FVM). The analyzed geometry is a two-dimensional backward-facing contracting channel and the effects of various weight percentages and Reynolds numbers have been studied in the supposed geometry. The results have been interpreted as the figures of Nusselt number, friction coefficient, pressure drop, velocity contours and static temperature. The results of this research indicate that, the enhancement of Reynolds number or weight percentage of nanoparticles causes the reduction of surface temperature and the enhancement of heat transfer coefficient. By increasing Reynolds number, the axial velocity enhances, causing the enhancement of momentum. By increasing fluid momentum at the beginning of channel, especially in areas close to the upper wall, the axial velocity reduces and the possibility of vortex generation increases. The mentioned behavior causes a great enhancement in velocity gradients and pressure drop at the inlet of channel. Also, in these areas, Nusselt number and local friction coefficient figures have a relative decline, which is due to the sudden reduction of velocity. In general, by increasing the mass fraction of solid nanoparticles, the average Nusselt number increases and in Reynolds number of 150, the enhancement of pumping power and pressure drop does not cause any significant changes. This behavior is an important advantage of choosing nanofluid which causes the enhancement of thermal efficiency.

165 citations

Journal ArticleDOI
TL;DR: Results based on the collected data from 180 staff employees of the Post Bank 1 in Eastern and Western Azerbaijan indicated that customer satisfaction, the amount of costs, infrastructures and knowledge and information are the effective's factors which have a significant impact on e-commerce success.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the application of nano technology in chemical flooding process in oil recovery and review the application nano in the polymer and surfactant flooding on the interfacial tension process.
Abstract: Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

165 citations

Journal ArticleDOI
TL;DR: The results showed that this peptide has inhibitory effects on both Gram-negative and Gram-positive bacteria, and was elected for isolation of antioxidant peptides by reverse-phase high-performance liquid chromatography (RP-HPLC).

165 citations


Authors

Showing all 83704 results

NameH-indexPapersCitations
Ajit Kumar Mohanty141112493062
Pierluigi Paolucci1381965105050
Eric Conte132120684593
Patrizia Azzi132127583686
D. Del Re131140687230
Jean-Laurent Agram128122184423
Seyed Mohsen Etesami128110176488
Jean-Charles Fontaine128119084011
Roberta Arcidiacono128132280917
Tejinder Virdee128120874372
Frank Hartmann127111681455
Paolo Azzurri126105881651
Achim Stahl1241248111121
Federica Primavera12087663895
Riccardo Andrea Manzoni12094667897
Network Information
Related Institutions (5)
Ferdowsi University of Mashhad
20.8K papers, 263.2K citations

97% related

University of Tabriz
20.9K papers, 313.9K citations

96% related

Tarbiat Modares University
32.6K papers, 526.3K citations

96% related

University of Tehran
65.3K papers, 958.5K citations

96% related

Shahid Beheshti University
21K papers, 293.7K citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
2022373
202111,539
202012,092
201911,011
201810,260