scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: This work identifies an efficient out-of-plane energy transfer channel in van der Waals heterostructures, where charge carriers in graphene couple to hyperbolic phonon–polaritons on a picosecond timescale, and studies this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature.
Abstract: Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties 1–7 . Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting 8–16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons 17–19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures. Observation of an efficient out-of-plane energy transfer channel in van der Waals heterostructures, where charge carriers in graphene couple to hyperbolic phonon–polaritons on a picosecond timescale.

156 citations

Journal ArticleDOI
TL;DR: The direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging.
Abstract: Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo-oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron–hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries. Photo-rechargable energy storage cells can provide plug-free power for various applications. Here the authors integrate a photo-absorbing dye complex with LiFePO4nanocrystals as a lithium-ion battery cathode in a two-electrode system demonstrating its photo-charging and galvanostatic discharging.

155 citations

Journal ArticleDOI
TL;DR: The third-harmonic is thirty times stronger than the second- Harmonic in monolayer MoS2, paving the way for efficient harmonic generation based on layered materials for applications such as microscopy and imaging.
Abstract: Nonlinear optical processes, such as harmonic generation, are of great interest for various applications, e.g., microscopy, therapy, and frequency conversion. However, high-order harmonic conversion is typically much less efficient than low-order, due to the weak intrinsic response of the higher-order nonlinear processes. Here we report ultra-strong optical nonlinearities in monolayer MoS2 (1L-MoS2): the third harmonic is 30 times stronger than the second, and the fourth is comparable to the second. The third harmonic generation efficiency for 1L-MoS2 is approximately three times higher than that for graphene, which was reported to have a large χ (3). We explain this by calculating the nonlinear response functions of 1L-MoS2 with a continuum-model Hamiltonian and quantum mechanical diagrammatic perturbation theory, highlighting the role of trigonal warping. A similar effect is expected in all other transition-metal dichalcogenides. Our results pave the way for efficient harmonic generation based on layered materials for applications such as microscopy and imaging. Harmonic generation is a nonlinear optical process occurring in a variety of materials; the higher orders generation is generally less efficient than lower orders. Here, the authors report that the third-harmonic is thirty times stronger than the second-harmonic in monolayer MoS2.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the formulation of aqueous/alcohol-based graphene inks allows metal-free, flexible MSCs to be screen-printed and the devices exhibit areal capacitance (Careal) values up to 1.324 mF cm-2 (5.296 mFcm-2 for a single electrode).
Abstract: The miniaturization of energy storage units is pivotal for the development of next-generation portable electronic devices. Micro-supercapacitors (MSCs) hold a great potential to work as on-chip micro-power sources and energy storage units complementing batteries and energy harvester systems. The scalable production of supercapacitor materials with cost-effective and high-throughput processing methods is crucial for the widespread application of MSCs. Here, we report wet-jet milling exfoliation of graphite to scale-up the production of graphene as supercapacitor material. The formulation of aqueous/alcohol-based graphene inks allows metal-free, flexible MSCs to be screen-printed. These MSCs exhibit areal capacitance (Careal) values up to 1.324 mF cm-2 (5.296 mF cm-2 for a single electrode), corresponding to an outstanding volumetric capacitance (Cvol) of 0.490 F cm-3 (1.961 F cm-3 for a single electrode). The screen-printed MSCs can operate up to power density above 20 mW cm-2 at energy density of 0.064 uWh cm-2. The devices exhibit excellent cycling stability over charge-discharge cycling (10000 cycles), bending cycling (100 cycles at bending radius of 1 cm) and folding (up to angles of 180°). Moreover, ethylene vinyl acetate-encapsulated MSCs retain their electrochemical properties after a home-laundry cycle, providing waterproof and washable properties for prospective application in wearable electronics.

155 citations

Journal ArticleDOI
TL;DR: The importance of epigenetic alterations during the development of the most prevalent human autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Sjogren’s syndrome (SS), autoimmune thyroid diseases (AITD), and type 1 diabetes (T1D), is reviewed to provide new insights in the pathogenesis of autoimmune diseases.
Abstract: Epigenetic pathways play a pivotal role in the development and function of the immune system. Over the last decade, a growing body of studies has been published out seeking to explain a correlation between epigenetic modifications and the development of autoimmune disorders. Epigenetic changes, such as DNA methylation, histone modifications, and noncoding RNAs, are involved in the pathogenesis of autoimmune diseases mainly by regulating gene expression. This paper reviews the importance of epigenetic alterations during the development of the most prevalent human autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Sjogren’s syndrome (SS), autoimmune thyroid diseases (AITD), and type 1 diabetes (T1D), aiming to provide new insights in the pathogenesis of autoimmune diseases and the possibility to develop novel therapeutic approaches targeting the epigenome.

155 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381