scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
14 Apr 2014-Leukemia
TL;DR: Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL) and miRNAs regulated by Notch pathway are identified, including miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus.
Abstract: Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols.

152 citations

Journal ArticleDOI
TL;DR: It is proposed that covert activity in the human motor cortex may reflect different aspects of motor behavior, and MEP amplitudes, regardless of pliers used, reflected the muscular pattern involved in the execution of the observed action.
Abstract: We recorded motor-evoked potentials (MEPs) to transcranial magnetic stimulation from the right opponens pollicis (OP) muscle while participants observed an experimenter operating two types of pliers: pliers opened by the extension of the fingers and closed by their flexion ("normal pliers") and pliers opened by the flexion of the fingers and closed by their extension ("reverse pliers"). In one experimental condition, the experimenter merely opened and closed the pliers; in the other, he grasped an object with them. In a further condition, the participants imagined themselves operating the normal and reverse pliers. During the observation of actions devoid of a goal, the MEP amplitudes, regardless of pliers used, reflected the muscular pattern involved in the execution of the observed action. In contrast, during the observation of goal-directed actions, the MEPs from OP were modulated by the action goal, increasing during goal achievement despite the opposite hand movements necessary to obtain it. During motor imagery, the MEPs recorded from OP reflected the muscular pattern required to perform the imagined action. We propose that covert activity in the human motor cortex may reflect different aspects of motor behavior. Imagining oneself performing tool actions or observing tool actions devoid of a goal activates the representation of the hand movements that correspond to the observed ones. In contrast, the observation of tool actions with a goal incorporates the distal part of the tool in the observer's body schema, resulting in a higher-order representation of the meaning of the motor act.

151 citations

Journal ArticleDOI
TL;DR: This review discusses the current knowledge of the interactions between bacteria and abiotic nanostructured substrates and surveys the most promising approaches for the fabrication of silver polymeric nanocomposites, which have important applications as antimicrobial materials.

151 citations

Journal ArticleDOI
TL;DR: A new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) is presented and it is shown how the features of the recorded network dynamics differ from the corresponding 2D network model.
Abstract: Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.

151 citations

Journal ArticleDOI
TL;DR: In this article, transparent organic cell stimulating and sensing transistors (O-CSTs) are used for real-time stimulation and recording of neural cell bioelectrical activity, which can provide an unprecedented insight in understanding the functions of the nervous system.
Abstract: Real-time stimulation and recording of neural cell bioelectrical activity could provide an unprecedented insight in understanding the functions of the nervous system, and it is crucial for developing advanced in vitro drug screening approaches. Among organic materials, suitable candidates for cell interfacing can be found that combine long-term biocompatibility and mechanical flexibility. Here, we report on transparent organic cell stimulating and sensing transistors (O-CSTs), which provide bidirectional stimulation and recording of primary neurons. We demonstrate that the device enables depolarization and hyperpolarization of the primary neuron membrane potential. The transparency of the device also allows the optical imaging of the modulation of the neuron bioelectrical activity. The maximal amplitude-to-noise ratio of the extracellular recording achieved by the O-CST device exceeds that of a microelectrode array system on the same neuronal preparation by a factor of 16. Our organic cell stimulating and sensing device paves the way to a new generation of devices for stimulation, manipulation and recording of cell bioelectrical activity in vitro and in vivo.

151 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381