scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an artificial muscular hydrostat was used for developing an octopus-like robot. But the experimental results showed that control is simplified by the arrangement of muscles as well as by the mechanical properties of the muscular Hydrostat.

149 citations

Journal ArticleDOI
TL;DR: Cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals are described.
Abstract: Dendrimers have been described as one of the most tunable and therefore potentially applicable nanoparticles both for diagnostics and therapy. Recently, in order to realize drug delivery agents, most of the effort has been dedicated to the development of dendrimers that could internalize into the cells and target specific intracellular compartments in vitro and in vivo. Here, we describe cell internalization properties and diffusion of G4 and G4-C12 modified PAMAM dendrimers in primary neuronal cultures and in the CNS of live animals. Confocal imaging on primary neurons reveals that dendrimers are able to cross the cell membrane and reach intracellular localization following endocytosis. Moreover, functionalization of PAMAMs has a dramatic effect on their ability to diffuse in the CNS tissue in vivo and penetrate living neurons as shown by intraparenchymal or intraventricular injections. 100 nM G4-C12 PAMAM dendrimer already induces dramatic apoptotic cell death of neurons in vitro. On the contrary, G4 PAMAM does not induce apoptotic cell death of neural cells in the sub-micromolar range of concentration and induces low microglia activation in brain tissue after a week. Our detailed description of dendrimer distribution patterns in the CNS will facilitate the design of tailored nanomaterials in light of future clinical applications.

149 citations

Journal ArticleDOI
TL;DR: It is shown that quantitative ET is enhanced greatly by the application of compressed sensing (CS) techniques to the tomographic reconstruction and the robust performance of the CS-ET algorithm with undersampled data should allow rapid progress with time-resolved 3D nanoscale studies, 3D atomic resolution imaging, and cryo-tomography of nanoscales cellular structures.
Abstract: In this paper, we apply electron tomography (ET) to the study of the three-dimensional (3D) morphology of iron oxide nanoparticles (NPs) with reactive concave surfaces. The ability to determine quantitatively the volume and shape of the NP concavity is essential for understanding the key–lock mechanism responsible for the destabilization of gold nanocrystals within the iron oxide NP concavity. We show that quantitative ET is enhanced greatly by the application of compressed sensing (CS) techniques to the tomographic reconstruction. High-fidelity tomograms using a new CS-ET algorithm reveal with clarity the concavities of the particle and enable 3D nanometrology studies to be undertaken with confidence. In addition, the robust performance of the CS-ET algorithm with undersampled data should allow rapid progress with time-resolved 3D nanoscale studies, 3D atomic resolution imaging, and cryo-tomography of nanoscale cellular structures.

149 citations

Journal ArticleDOI
TL;DR: In this article, a formation mechanism for polymer chains aligned with various semiconductor polymers and a microstructure for directionally aligned film through systematic analysis that includes polarized UV-visible-near infrared (UV-vis-NIR) absorption spectroscopy, atomic force microscopy, polarized charge modulation microscopy (p-CMM), and incident X-ray diffraction (GIXD) measurements.
Abstract: In this report, we investigate a formation mechanism for polymer chains aligned with various semiconductor polymers and a microstructure for directionally aligned film through systematic analysis that includes polarized UV–visible–near infrared (UV–vis–NIR) absorption spectroscopy, atomic force microscopy, polarized charge modulation microscopy (p-CMM), and incident X-ray diffraction (GIXD) measurements. Through this study, we make two important observations: first, the highly aligned organic polymer semiconductor films are achieved by off-center spin coating of the preaggregated conjugated polymer solution. Second, the directionally aligned conjugated polymer films exhibit a larger anisotropy on the top surface compared with bulk film, which allows effective mobility improvement in top-gate/bottom-contact field-effect transistors with high performance uniformity. Finally, we demonstrate high-mobility organic field-effect transistors (OFETs) (7.25 cm2/(V s)) with a mobility large anisotropy (37-fold) usin...

149 citations

Journal ArticleDOI
TL;DR: Evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components is provided.
Abstract: Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inf...

149 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381