scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the radiative lifetime of rhodamines can be correlated to the charge transfer from the phenyl toward the xanthene moiety occurring upon the S(0) ← S(1) de-excitation, and to thexanthene/phenyl relative orientation assumed in the S (1) minimum structure.
Abstract: Although lifetimes and quantum yields of widely used fluorophores are often largely characterized, a systematic approach providing a rationale of their photophysical behavior on a quantitative basis is still a challenging goal. Here we combine methods rooted in the time-dependent density functional theory and fluorescence lifetime imaging microscopy to accurately determine and analyze fluorescence signatures (lifetime, quantum yield, and band peaks) of several commonly used rhodamine and pyronin dyes. We show that the radiative lifetime of rhodamines can be correlated to the charge transfer from the phenyl toward the xanthene moiety occurring upon the S0 ← S1 de-excitation, and to the xanthene/phenyl relative orientation assumed in the S1 minimum structure, which in turn is variable upon the amino and the phenyl substituents. These findings encourage the synergy of experiment and theory as unique tool to design finely tuned fluorescent probes, such those conceived for modern optical sensors.

105 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the pain signal and its management during application of transdermal microneedle (MN) and typical hypodermic needles.
Abstract: Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.

104 citations

Journal ArticleDOI
TL;DR: An unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allOGrafts finds WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1-4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors.

104 citations

Journal ArticleDOI
14 Jan 2011-Leukemia
TL;DR: In this paper, the SCID-hu model was used to recapitulate the complex interactions occurring between MM and its human BM milieu (HuBMM) in mice.
Abstract: Multiple myeloma (MM) cells home to the bone marrow (BM) and adhere to extracellular matrix (ECM) proteins and to bone marrow stromal cells (BMSCs). The close cross talk between MM cells and cells of the non-tumor compartment within the BM has a key role in supporting tumor growth, survival and development of drug resistance. This biological scenario has led to a growing interest in novel drugs, targeting MM cells and/or interfering with their human BM milieu (HuBMM).1, 2 Based on this, appropriate in vivo models that recapitulate the complex interactions occurring between MM and its HuBMM are required for preclinical evaluation of new anti-MM agents. To date, the in vivo study of MM pathobiology and the validation of therapeutic anti-MM agents has been carried out using a variety of models of murine MM or human MM xenografts in immunocompromised mice.3 These models, however, do not replicate the HuBMM. The development of the SCID (severe combined immunodeficiency)-hu model has been an important advance, as it was the first model to recapitulate a HuBMM in mice.4, 5, 6 However, although the SCID-hu system remains a highly relevant model for preclinical investigation, it does have important limitations: (i) restricted availability of human fetal bone chips; (ii) the allogeneic nature of the fetal BM milieu versus MM cells; and (iii) the significant heterogeneity of implanted human bone chips, collected from different individuals at different gestational age, that may produce experimental variability.

104 citations

Journal ArticleDOI
TL;DR: The results indicate that cis-trans photoisomerization is a general mechanism of FP chromophores whose efficiency is modulated by the detailed mutant-specific protein environment.
Abstract: Photochromic variants of fluorescent proteins are opening the way to a number of opportunities for high-sensitivity regioselective studies in the cellular environment and may even lead to applications in information and communication technology. Yet, the detailed photophysical processes at the basis of photoswitching have not been fully clarified. In this paper, we used synthetic FP chromophores to clarify the photophysical processes associated with the photochromic behavior. In particular, we investigated the spectral modification of synthetic chromophore analogues of wild-type green fluorescent protein (GFP), Y66F GFP (BFPF), and Y66W GFP (CFP) upon irradiation in solutions of different polarities. We found that the cis-trans photoisomerization mechanism can be induced in all the chromophores. The structural assignments were carried out both by NMR measurements and DFT calculations. Remarkably, we determined for the first time the spectra of neutral trans isomers in different solvents. Finally, we calculated the photoconversion quantum yields by absorption measurements under continuous illumination at different times and by a nanosecond laser-flash photolysis method. Our results indicate that cis-trans photoisomerization is a general mechanism of FP chromophores whose efficiency is modulated by the detailed mutant-specific protein environment.

104 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381