scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The theory offers novel unsupervised learning algorithms for "deep" architectures for image and speech recognition, and conjecture that the main computational goal of the ventral stream of visual cortex is to provide a hierarchical representation of new objects/images which is invariant to transformations, stable, and selective for recognition.

104 citations

Journal ArticleDOI
TL;DR: Recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients are discussed, and the state of current clinical research targeting GABAergic signaling in individuals with DS is evaluated.
Abstract: Down syndrome (DS) is a genetic disorder caused by the presence of a third copy of chromosome 21. DS affects multiple organs, but it invariably results in altered brain development and diverse degrees of intellectual disability. A large body of evidence has shown that synaptic deficits and memory impairment are largely determined by altered GABAergic signaling in trisomic mouse models of DS. These alterations arise during brain development while extending into adulthood, and include genesis of GABAergic neurons, variation of the inhibitory drive and modifications in the control of neural-network excitability. Accordingly, different pharmacological interventions targeting GABAergic signaling have proven promising preclinical approaches to rescue cognitive impairment in DS mouse models. In this review, we will discuss recent data regarding the complex scenario of GABAergic dysfunctions in the trisomic brain of DS mice and patients, and we will evaluate the state of current clinical research targeting GABAergic signaling in individuals with DS.

104 citations

Journal ArticleDOI
TL;DR: The data indicate that SynI and SynII have specific and non-redundant functions, and that synaptic dysfunctions associated with synapsin mutations negatively modulate cognitive performances and neuronal survival during senescence.
Abstract: Synapsin I (SynI) and synapsin II (SynII) are major synaptic vesicle (SV) proteins that function in the regulation of the availability of SVs for release in mature neurons. SynI and SynII show a high level of sequence similarity and share many functions in vivo, although distinct physiological roles for the two proteins have been proposed. Both SynI–/– and SynII–/– mice have a normal lifespan, but exhibit a decreased number of SVs and synaptic depression upon high-frequency stimulation. Because of the role of the synapsin proteins in synaptic organization and plasticity, we studied the long-lasting effects of synapsin deletion on the phenotype of SynI–/– and SynII–/– mice during aging. Both SynI–/– and SynII–/– mice displayed behavioural defects that emerged during aging and involved emotional memory in both mutants, and spatial memory in SynII–/– mice. These abnormalities, which were more pronounced in SynII–/– mice, were associated with neuronal loss and gliosis in the cerebral cortex and hippocampus. The data indicate that SynI and SynII have specific and non-redundant functions, and that synaptic dysfunctions associated with synapsin mutations negatively modulate cognitive performances and neuronal survival during senescence.

104 citations

Journal ArticleDOI
TL;DR: This review discusses in detail the application of BRET to study dopamine and trace amine receptors signaling, presenting examples of an exchange protein activated by cAMP biosensor to measure cAMP, β-arrestin biosensors to determine β-Arrestin recruitment to the receptor, and dopamine D2 receptor and Trace amine-associated receptor 1 biosensor to investigate heterodimerization between them.
Abstract: Bioluminescence resonance energy transfer (BRET)-based biosensors have been extensively used over the last decade to study protein–protein interactions and intracellular signal transduction in living cells. In this review, we discuss the various BRET biosensors that have been developed to investigate biology, pharmacology, and signaling of G protein-coupled receptors (GPCRs). GPCRs form two distinct types of multiprotein signal transduction complexes based upon their inclusion of G proteins or β-arrestins that can be differentially affected by drugs that exhibit functional selectivity toward G protein or β-arrestin signaling. BRET has been especially adept at illuminating the dynamics of protein–protein interactions between receptors, G proteins, β-arrestins, and their many binding partners in living cells; as well as measuring the formation and accumulation of second messengers following receptor activation. Specifically, we discuss in detail the application of BRET to study dopamine and trace amine receptors signaling, presenting examples of an exchange protein activated by cAMP biosensor to measure cAMP, β-arrestin biosensors to determine β-arrestin recruitment to the receptor, and dopamine D2 receptor and trace amine-associated receptor 1 biosensors to investigate heterodimerization between them. As the biochemical spectrum of BRET biosensors expands, the number of signaling pathways that can be measured will concomitantly increase. This will be particularly useful for the evaluation of functional selectivity in which the real-time BRET capability to measure distinct signaling modalities will dramatically shorten the time to characterize new generation of biased drugs. These emerging approaches will further expand the growing application of BRET in the screening for novel pharmacologically active compounds.

104 citations

Journal ArticleDOI
TL;DR: Serpine1 mRNA is shown as one such RNA that can control the levels of the endogenous miRNA miR-30b/c-5p by modulating miRNA degradation via the target-directed miRNAs degradation process.
Abstract: Little is known about miRNA decay. A target-directed miRNA degradation mechanism (TDMD) has been suggested, but further investigation on endogenous targets is necessary. Here, we identify hundreds of targets eligible for TDMD and show that an endogenous RNA (Serpine1) controls the degradation of two miRNAs (miR-30b-5p and miR-30c-5p) in mouse fibroblasts. In our study, TDMD occurs when the target is expressed at relatively low levels, similar in range to those of its miRNAs (100–200 copies per cell), and becomes more effective at high target:miRNA ratios (>10:1). We employ CRISPR/Cas9 to delete the miR-30 responsive element within Serpine1 3'UTR and interfere with TDMD. TDMD suppression increases miR-30b/c levels and boosts their activity towards other targets, modulating gene expression and cellular phenotypes (i.e., cell cycle re-entry and apoptosis). In conclusion, a sophisticated regulatory layer of miRNA and gene expression mediated by specific endogenous targets exists in mammalian cells.

104 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381