scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that, by using the sparsity measure coefficient regarded as a refocusing criterion in the holographic reconstruction, it is possible to recover the focus plane and establish the degree of sparsity of digital holograms, when samples of the diffraction Fresnel propagation integral are used as a sparse signal representation.
Abstract: Several automatic approaches have been proposed in the past to compute the refocus distance in digital holography (DH). However most of them are based on a maximization or minimization of a suitable amplitude image contrast measure, regarded as a function of the reconstruction distance parameter. Here we show that, by using the sparsity measure coefficient regarded as a refocusing criterion in the holographic reconstruction, it is possible to recover the focus plane and, at the same time, establish the degree of sparsity of digital holograms, when samples of the diffraction Fresnel propagation integral are used as a sparse signal representation. We employ a sparsity measurement coefficient known as Gini's index thus showing for the first time, to the best of our knowledge, its application in DH, as an effective refocusing criterion. Demonstration is provided for different holographic configurations (i.e., lens and lensless apparatus) and for completely different objects (i.e., a thin pure phase microscopic object as an in vitro cell, and macroscopic puppets) preparation.

103 citations

Journal ArticleDOI
TL;DR: It is shown that brain-wide patterns of fMRI co-activation can be reliably mapped at the group and subject level, defining a restricted set of recurring brain states characterized by rich network structure.

103 citations

Journal ArticleDOI
TL;DR: The potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocom composites in future research in the biomedical field.
Abstract: Among the different synthetic polymers developed for biomedical applications, poly(lactic-co-glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocomposites in future research in the biomedical field.

103 citations

Journal ArticleDOI
TL;DR: The functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres were investigated to create novel design principles and specifications that can be used in developing a new soft robotic arm.
Abstract: Octopuses are molluscs that belong to the group Cephalopoda. They lack joints and rigid links, and as a result, their arms possess virtually limitless freedom of movement. These flexible appendages exhibit peculiar biomechanical features such as stiffness control, compliance, and high flexibility and dexterity. Studying the capabilities of the octopus arm is a complex task that presents a challenge for both biologists and roboticists, the latter of whom draw inspiration from the octopus in designing novel technologies within soft robotics. With this idea in mind, in this study, we used new, purposively developed methods of analysing the octopus arm in vivo to create new biologically inspired design concepts. Our measurements showed that the octopus arm can elongate by 70% in tandem with a 23% diameter reduction and exhibits an average pulling force of 40 N. The arm also exhibited a 20% mean shortening at a rate of 17.1 mm s(-1) and a longitudinal stiffening rate as high as 2 N (mm s)(-1). Using histology and ultrasounds, we investigated the functional morphology of the internal tissues, including the sinusoidal arrangement of the nerve cord and the local insertion points of the longitudinal and transverse muscle fibres. The resulting information was used to create novel design principles and specifications that can in turn be used in developing a new soft robotic arm.

103 citations

Journal ArticleDOI
TL;DR: In this paper, a single-step solvothermal process was used to synthesize highly transparent mesoporous films made by anatase TiO2 nanorods that have been synthesized by a single step solvewater process.
Abstract: We present a novel, facile, and cost-effective method to prepare highly transparent mesoporous films made by anatase TiO2 nanorods that have been synthesized by a single-step solvothermal process Such nanorods have been conveniently used as prepared—without completely removing the residual organics—to obtain suitable screen-printable paste by means of the use of proper polymeric binders This method has been successfully implemented to fabricate highly efficient nanorod-based photoelectrodes for dye-sensitized solar cells They showed an increment of the overall quantum conversion efficiency comprised between 34% and 58% with respect to cells based on commercial P25 titanium dioxide nanoparticles In particular, a maximum photocurrent density and solar conversion efficiency of 169 mA/cm2 and 79% have been obtained, respectively

103 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381