scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells is reported in the strong quantum confinement regime.
Abstract: We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

416 citations

Journal ArticleDOI
TL;DR: The knowledge gap and promising solutions toward perceptive soft robots are discussed and analyzed to provide a perspective in this field and challenges and trends in developing multimodal sensors, stretchable conductive materials and electronic interfaces, modeling techniques, and data interpretation for soft robotic sensing are highlighted.
Abstract: In the past few years, soft robotics has rapidly become an emerging research topic, opening new possibilities for addressing real-world tasks Perception can enable robots to effectively explore the unknown world, and interact safely with humans and the environment Among all extero- and proprioception modalities, the detection of mechanical cues is vital, as with living beings A variety of soft sensing technologies are available today, but there is still a gap to effectively utilize them in soft robots for practical applications Here, the developments in soft robots with mechanical sensing are summarized to provide a comprehensive understanding of the state of the art in this field Promising sensing technologies for mechanically perceptive soft robots are described, categorized, and their pros and cons are discussed Strategies for designing soft sensors and criteria to evaluate their performance are outlined from the perspective of soft robotic applications Challenges and trends in developing multimodal sensors, stretchable conductive materials and electronic interfaces, modeling techniques, and data interpretation for soft robotic sensing are highlighted The knowledge gap and promising solutions toward perceptive soft robots are discussed and analyzed to provide a perspective in this field

416 citations

Journal ArticleDOI
TL;DR: It is demonstrated that colloidal Cu(2-x)Se nanocrystals exhibit a well-defined infrared absorption band due to the excitation of positive charge carrier oscillations (i.e., a valence band plasmon mode), which can be tuned reversibly in width and position by varying the copper stoichiometry.
Abstract: We demonstrate that colloidal Cu2–xSe nanocrystals exhibit a well-defined infrared absorption band due to the excitation of positive charge carrier oscillations (i.e., a valence band plasmon mode), which can be tuned reversibly in width and position by varying the copper stoichiometry. The value of x could be incrementally varied from 0 (no plasmon absorption, then a broad peak at 1700 nm) to 0.4 (narrow plasmon band at 1100 nm) by oxidizing Cu2Se nanocrystals (upon exposure either to oxygen or to a Ce(IV) complex), and it could be incrementally restored back to zero by the addition of a Cu(I) complex. The experimentally observed plasmonic behavior is in good agreement with calculations based on the electrostatic approximation.

410 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: This work presents an multi-task dictionary learning method which is able to learn a dataset-shared but target-data-biased representation, and demonstrates that the method significantly outperforms the state-of-the-art.
Abstract: Most existing person re-identification (Re-ID) approaches follow a supervised learning framework, in which a large number of labelled matching pairs are required for training. This severely limits their scalability in realworld applications. To overcome this limitation, we develop a novel cross-dataset transfer learning approach to learn a discriminative representation. It is unsupervised in the sense that the target dataset is completely unlabelled. Specifically, we present an multi-task dictionary learning method which is able to learn a dataset-shared but targetdata-biased representation. Experimental results on five benchmark datasets demonstrate that the method significantly outperforms the state-of-the-art.

408 citations

Journal ArticleDOI
24 Jul 2014-Nature
TL;DR: The results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.
Abstract: Global transcriptional and epigenomic analyses in diverse cell types reveal that the primary action of Myc is to up- and downregulate transcription of distinct groups of genes, rather than to amplify transcription of all active genes; general RNA amplification, when observed, is better explained as an indirect consequence of Myc’s action on cellular physiology. The mammalian Myc oncoprotein is a transcription factor that binds to thousands of promoters. Two current models for Myc function propose that it is either a gene-specific regulator of transcription, or a global amplifier of all active genes. Two groups reporting in this issue of Nature present evidence in support of the idea that Myc regulates specific genes. Arianna Sabo et al. analyse Myc genomic distribution and RNA expression profiles during B-cell lymphomagenesis in mice and Susanne Walz et al. compare normal cells and Myc-transformed tumour cells. Although both groups find that Myc overexpression can result in a general increase in gene expression, the effect is an indirect one. Modulated by various other transcription factors, Myc seems to act primarily by regulating specific groups of genes. The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci1. Recent work suggested that rather than up- and downregulating selected groups of genes1,2,3, Myc targets all active promoters and enhancers in the genome (a phenomenon termed ‘invasion’) and acts as a general amplifier of transcription4,5. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B cells and fibroblasts. Consistent with long-standing observations6, we detected general increases in total RNA or messenger RNA copies per cell (hereby termed ‘amplification’)4,5 when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response)7,8 or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, although having the potential to interact with all active or poised regulatory elements in the genome4,5,9,10,11, Myc does not directly act as a global transcriptional amplifier4,5. Instead, our results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.

408 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381