scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Humanoid robot & Robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Humanoid robot, Robot, Graphene, iCub, Population


Papers
More filters
Journal ArticleDOI
TL;DR: This study provides compelling evidence for the existence of EAPs as physical entities at the plasma membrane, distinct from lipid rafts.
Abstract: VCAM-1 and ICAM-1, receptors for leukocyte integrins, are recruited to cell–cell contact sites on the apical membrane of activated endothelial cells. In this study, we show that this recruitment is independent of ligand engagement, actin cytoskeleton anchorage, and heterodimer formation. Instead, VCAM-1 and ICAM-1 are recruited by inclusion within specialized preformed tetraspanin-enriched microdomains, which act as endothelial adhesive platforms (EAPs). Using advanced analytical fluorescence techniques, we have characterized the diffusion properties at the single-molecule level, nanoscale organization, and specific intradomain molecular interactions of EAPs in living primary endothelial cells. This study provides compelling evidence for the existence of EAPs as physical entities at the plasma membrane, distinct from lipid rafts. Scanning electron microscopy of immunogold-labeled samples treated with a specific tetraspanin-blocking peptide identify nanoclustering of VCAM-1 and ICAM-1 within EAPs as a novel mechanism for supramolecular organization that regulates the leukocyte integrin–binding capacity of both endothelial receptors during extravasation.

220 citations

Journal ArticleDOI
TL;DR: This review will provide an overview of the Ly6 complex and discuss the specific Ly6 proteins implicated in neutrophil biology, including Ly6B, Ly6C, and Ly6G.
Abstract: The murine Ly6 complex was identified 35 years ago using antisera to lymphocytes. With advances in mAb development, molecular cloning, and genome sequencing, >20 structurally related genes have been identified within this complex on chromosome 15. All members of the Ly6 family and their human homologues share the highly conserved LU domain and most also possess a GPI anchor. Interestingly, many Ly6 proteins are expressed in a lineage-specific fashion, and their expression often correlates with stages of differentiation. As a result, Ly6 proteins are frequently used as surface markers for leukocyte subset identification and targets for antibody-mediated depletion. Murine neutrophils display prominent surface expression of several Ly6 proteins, including Ly6B, Ly6C, and Ly6G. Although the physiology of most Ly6 proteins is not well understood, a role in neutrophil functions, such as migration, is recognized increasingly. In this review, we will provide an overview of the Ly6 complex and discuss, in detail, the specific Ly6 proteins implicated in neutrophil biology.

220 citations

Journal ArticleDOI
TL;DR: The proposed BMI exploits a novel algorithm to decouple the estimates of force and stiffness of the human arm while performing the task, and derives the reference command from a novel body–machine interface (BMI) applied to the master operator’s arm.
Abstract: This work presents the concept of tele-impedance as a method for remotely controlling a robotic arm in interaction with uncertain environments. As an alternative to bilateral force-reflecting teleoperation control, in tele-impedance a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller without explicit feedback to the operator. We derive the reference command from a novel body-machine interface (BMI) applied to the master operator's arm, using only non-intrusive position and electromyography (EMG) measurements, and excluding any feedback from the remote site except for looking at the task. The proposed BMI exploits a novel algorithm to decouple the estimates of force and stiffness of the human arm while performing the task. The endpoint (wrist) position of the human arm is monitored by an optical tracking system and used for the closed-loop position control of the robot's end-effector. The concept is demonstrated in two experiments, namely a peg-in-the-hole and a ball-catching task, which illustrate complementary aspects of the method. The performance of tele-impedance control is assessed by comparing the results obtained with the slave arm under either constantly low or high stiffness.

220 citations

Journal ArticleDOI
TL;DR: It is proposed that endocytosed AgNPs are degraded in the lysosomes and the release of Ag(+) ions in the cytosol induces cell damages, while ions released in the cell culture medium play a negligible effect, and will be useful to develop safer-by-design nanoparticles and proper regulatory guidelines of AgNPS.

218 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of applying an electric field on lead halide perovskite solar cells under different environmental conditions are identified, such as exposure to light, heat, ambient environment, and electrical bias.
Abstract: For lead halide perovskite solar cells to be considered for large-scale commercial applications, the active material must be proven to be fundamentally stable under relevant operating conditions, such as exposure to light, heat, ambient environment, and electrical bias. Reversible and irreversible effects upon applying an electric field under different environmental conditions are identified. The application of an electric field in inert conditions leads only to a reversible poling on a time scale of minutes, whose distribution is mapped throughout the semiconductor film. It is also found that the presence of moisture, and in general of small polar and hydrogen-bonding molecules, results in an irreversible degradation in the presence of the electric field, which happens in a time scale of hours under conditions relevant for photovoltaic operation. The measurements here suggest that the irreversible field-induced degradation in air occurs via a hydrated phase, in which the organic cation is loosely bound and can drift in response to an electric field, finally degrading the material to PbI2. This has direct relevance to perovskite solar cells; hysteretic behavior in current–voltage curves is aggravated by the presence of moisture while devices aged under load accelerates degradation.

217 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381