scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed and discussed current research efforts in this field employing different hexacyanoferrate-based compounds as potential electrochemical storage and electrochromic devices, linking the particular atomic structure of the studied compounds with their observed electrochemical behaviour.
Abstract: Well-known since the 18th century and widely used in painting and later in photography, hexacyanoferrate, or “Prussian blue”, is currently getting its “second life” as a promising material in several of the most advanced fields of the present technological sectors. This is mostly due to the rapid development of the energy storage market, which requires advanced, reliable, but also cost-effective materials for large-scale applications in load-levelling of renewable energy power sources. Non-Li technologies are considered as one of the most fertile R&D directions in this field, and Prussian blue demonstrates extremely promising characteristics for this kind of application. The unique features of this material are due to peculiarities of its atomic structure and ionic and electronic properties. In this article we review and discuss current research efforts in this field employing different hexacyanoferrate-based compounds as potential electrochemical storage and electrochromic devices. After a brief review of its history, we analyze the peculiarities of the atomic structure of these types of systems. We further summarize and analyze the most important and interesting experimental electrochemical data in this field, linking the particular atomic structure of the studied compounds with their observed electrochemical behaviour. This provides us with a snapshot of the current experimental state in this field and allows us to make certain predictions for its future development.

207 citations

Journal ArticleDOI
TL;DR: This review describes the evolution of the modern concept of synergy control using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic activity of hand muscles and proposes a theoretical framework to reconcile important and still debated concepts.
Abstract: The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is "synergy control" which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of "fixed" vs. "flexible" synergies and mechanisms underlying the combination of synergies for hand control.

207 citations

Journal ArticleDOI
TL;DR: The results suggest that PEA activation of PPAR-α in leukocytes serves as an early stop signal that contrasts the progress of inflammation, and the PEA-hydrolyzing amidase NAAA may provide a previously undescribed target for antiinflammatory medicines.
Abstract: Identifying points of control in inflammation is essential to discovering safe and effective antiinflammatory medicines. Palmitoylethanolamide (PEA) is a naturally occurring lipid amide that, when administered as a drug, inhibits inflammatory responses by engaging peroxisome proliferator-activated receptor-α (PPAR-α). PEA is preferentially hydrolyzed by the cysteine amidase N-acylethanolamine-hydrolyzing acid amidase (NAAA), which is highly expressed in macrophages. Here we report the discovery of a potent and selective NAAA inhibitor, N-[(3S)-2-oxo-3-oxetanyl]-3-phenylpropanamide [(S)-OOPP], and show that this inhibitor increases PEA levels in activated leukocytes and blunts responses induced by inflammatory stimuli both in vitro and in vivo. These effects are stereoselective, mimicked by exogenous PEA, and abolished by PPAR-α deletion. (S)-OOPP also attenuates inflammation and tissue damage and improves recovery of motor function in mice subjected to spinal cord trauma. The results suggest that PEA activation of PPAR-α in leukocytes serves as an early stop signal that contrasts the progress of inflammation. The PEA-hydrolyzing amidase NAAA may provide a previously undescribed target for antiinflammatory medicines.

207 citations

Journal ArticleDOI
TL;DR: An inclusive view of synaptic signaling also involves the surrounding extracellular matrix (ECM), which might help to understand better the mechanisms underlying signal integration and novel forms of long-term homeostatic regulation in the brain.

207 citations

Journal ArticleDOI
15 Jul 2015-ACS Nano
TL;DR: Following application of ultrasounds to cells treated with BTNPs, fluorescence imaging of ion dynamics revealed that the synergic stimulation is able to elicit a significant cellular response in terms of calcium and sodium fluxes; moreover, tests with appropriate blockers demonstrated that voltage-gated membrane channels are activated.
Abstract: Tetragonal barium titanate nanoparticles (BTNPs) have been exploited as nanotransducers owing to their piezoelectric properties, in order to provide indirect electrical stimulation to SH-SY5Y neuron-like cells. Following application of ultrasounds to cells treated with BTNPs, fluorescence imaging of ion dynamics revealed that the synergic stimulation is able to elicit a significant cellular response in terms of calcium and sodium fluxes; moreover, tests with appropriate blockers demonstrated that voltage-gated membrane channels are activated. The hypothesis of piezoelectric stimulation of neuron-like cells was supported by lack of cellular response in the presence of cubic nonpiezoelectric BTNPs, and further corroborated by a simple electroelastic model of a BTNP subjected to ultrasounds, according to which the generated voltage is compatible with the values required for the activation of voltage-sensitive channels.

206 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381