scispace - formally typeset
Search or ask a question
Institution

İzmir Institute of Technology

EducationIzmir, Turkey
About: İzmir Institute of Technology is a education organization based out in Izmir, Turkey. It is known for research contribution in the topics: Large Hadron Collider & Higgs boson. The organization has 1918 authors who have published 4366 publications receiving 97029 citations. The organization is also known as: Izmir Institute of Technology & İzmir Yüksek Teknoloji Enstitüsü.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the elastic constants of 2D honeycomb structures from the strain energy and calculate the Poisson's ratio as well as in-plane stiffness values were revealed, and the properties of these honeycomb materials were compared to those of three-dimensional Group IV and Group III-V compounds.
Abstract: Using first-principles plane wave calculations, we investigate two dimensional honeycomb structure of Group IV elements and their binary compounds, as well as the compounds of Group III-V elements. Based on structure optimization and phonon mode calculations, we determine that 22 different honeycomb materials are stable and correspond to local minima on the Born-Oppenheimer surface. We also find that all the binary compounds containing one of the first row elements, B, C or N have planar stable structures. On the other hand, in the honeycomb structures of Si, Ge and other binary compounds the alternating atoms of hexagons are buckled, since the stability is maintained by puckering. For those honeycomb materials which were found stable, we calculated optimized structures, cohesive energies, phonon modes, electronic band structures, effective cation and anion charges, and some elastic constants. The band gaps calculated within Density Functional Theory using Local Density Approximation are corrected by GW0 method. Si and Ge in honeycomb structure are semimetal and have linear band crossing at the Fermi level which attributes massless Fermion character to charge carriers as in graphene. However, all binary compounds are found to be semiconductor with band gaps depending on the constituent atoms. We present a method to reveal elastic constants of 2D honeycomb structures from the strain energy and calculate the Poisson’s ratio as well as in-plane stiffness values. Preliminary results show that the nearly lattice matched heterostructures of these compounds can offer new alternatives for nanoscale electronic devices. Similar to those of the three-dimensional Group IV and Group III-V compound semiconductors, one deduces interesting correlations among the calculated properties of present honeycomb structures. PACS numbers: 73.22.-f, 61.48.De, 63.22.-m, 62.23.Kn

1,686 citations

Journal ArticleDOI
G. L. Bayatian, S. Chatrchyan, G. Hmayakyan, Albert M. Sirunyan  +2060 moreInstitutions (143)
TL;DR: In this article, the authors present a detailed analysis of the performance of the Large Hadron Collider (CMS) at 14 TeV and compare it with the state-of-the-art analytical tools.
Abstract: CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider (LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking--through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start-up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb−1 or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, Bs production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb−1 to 30 fb−1. The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z0 boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing ET, B-mesons and τ's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

973 citations

Journal ArticleDOI
S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2268 moreInstitutions (158)
TL;DR: In this article, the transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transversal momentum resolution.
Abstract: Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36pb−1. The transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the ``Jet-Plus-Track'' approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the ``Particle Flow'' approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors

750 citations

Journal ArticleDOI
TL;DR: The pre-print version of the Published Article can be accessed from the link below - Copyright @ 2010 Springer Verlag as discussed by the authors, which can be viewed as a preprint of the published article.
Abstract: This is the pre-print version of the Published Article, which can be accessed from the link below - Copyright @ 2010 Springer Verlag

717 citations

Journal ArticleDOI
TL;DR: In this article, green tea leaves (GT-Fe NPs) were used as a Fenton-like catalyst for decolorization of aqueous solutions containing methylene blue (MB) and methyl orange (MO) dyes.

659 citations


Authors

Showing all 1967 results

NameH-indexPapersCitations
Maria Spiropulu135145596674
Gabor Istvan Veres135134996104
Gyorgy Vesztergombi133144494821
Tae Jeong Kim132142093959
Laurent Mirabito131140585839
Gulsen Onengut131123284686
Gigi Rolandi129118684621
Kadri Ozdemir128116383704
Dezso Horvath128128388111
N. Van Remortel126126781913
Mikhail Dubinin125109179808
Bora Isildak12499671284
Guler Karapinar123107171790
Luca Martini12177065147
A. J. Bell11949855643
Network Information
Related Institutions (5)
National Research Council
76K papers, 2.4M citations

90% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Technical University of Denmark
66.3K papers, 2.4M citations

89% related

Chalmers University of Technology
53.9K papers, 1.5M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
202257
2021406
2020355
2019327
2018325