scispace - formally typeset
Search or ask a question

Showing papers by "Jagiellonian University published in 2018"


Journal ArticleDOI
Clotilde Théry1, Kenneth W. Witwer2, Elena Aikawa3, María José Alcaraz4  +414 moreInstitutions (209)
TL;DR: The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities, and a checklist is provided with summaries of key points.
Abstract: The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

5,988 citations


Journal ArticleDOI
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4  +1025 moreInstitutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).

5,211 citations


Journal ArticleDOI
Jeffrey D. Stanaway1, Ashkan Afshin1, Emmanuela Gakidou1, Stephen S Lim1  +1050 moreInstitutions (346)
TL;DR: This study estimated levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs) by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017 and explored the relationship between development and risk exposure.

2,910 citations




Journal ArticleDOI
Craig E. Aalseth1, Fabio Acerbi2, P. Agnes3, Ivone F. M. Albuquerque4  +297 moreInstitutions (48)
TL;DR: The DarkSide-20k detector as discussed by the authors is a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active mass of 23 t (20 t).
Abstract: Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $>3 \times 10^{9}$ is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than $< 0.1$ events (other than $ u$ -induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of $1.2 \times 10^{-47}$ cm2 ( $1.1 \times 10^{-46}$ cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

534 citations


Journal ArticleDOI
24 Dec 2018
TL;DR: This paper conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings, and found that very little heterogeneity was attributable to the order in which the tasks were performed or whether the task were administered in lab versus online.
Abstract: We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance (p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion (p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely high-powered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied.

495 citations



Journal ArticleDOI
Iñigo Olalde1, Selina Brace2, Morten E. Allentoft3, Ian Armit4  +166 moreInstitutions (69)
08 Mar 2018-Nature
TL;DR: Genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans is presented, finding limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and excludes migration as an important mechanism of spread between these two regions.
Abstract: From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

479 citations


Journal ArticleDOI
TL;DR: The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain.
Abstract: Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals-the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek's idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.

419 citations


Journal ArticleDOI
P. Agnes1, Ivone F. M. Albuquerque2, Thomas Alexander3, A. K. Alton4  +193 moreInstitutions (30)
TL;DR: The results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure are presented.
Abstract: We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c2 using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c2 for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8–6 GeV/c2.

Journal ArticleDOI
Morad Aaboud1, Georges Aad2, Brad Abbott3, Ovsat Abdinov4  +2954 moreInstitutions (225)
TL;DR: In this paper, a search for new phenomena in final states with an energetic jet and large missing transverse momentum is reported, and the results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 36.1 fb−1 at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons (e or μ). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

Journal ArticleDOI
Rafael Lozano1, Nancy Fullman, Degu Abate2, Solomon M Abay  +1313 moreInstitutions (252)
TL;DR: A global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends and a estimates of health-related SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous.

Journal ArticleDOI
Matteo Agostini, A. M. Bakalyarov1, M. Balata, I. R. Barabanov2, Laura Baudis3, C. Bauer4, E. Bellotti5, S. Belogurov2, S. Belogurov1, Alessandro Bettini6, L. B. Bezrukov2, J. Biernat7, T. Bode8, D. Borowicz9, V.B. Brudanin9, R. Brugnera6, Allen Caldwell4, C. Cattadori5, A. Chernogorov1, T. Comellato8, V. D'Andrea, E. V. Demidova1, N. Di Marco, A. Domula10, E. Doroshkevich2, V. G. Egorov9, R. Falkenstein11, A. M. Gangapshev4, A. M. Gangapshev2, A. Garfagnini6, P. Grabmayr11, V. I. Gurentsov2, K. N. Gusev1, K. N. Gusev9, K. N. Gusev8, J. Hakenmüller4, A. Hegai11, M. Heisel4, S. Hemmer, R. Hiller3, Werner Hofmann4, Mikael Hult, L. V. Inzhechik2, J. Janicskó Csáthy8, Josef Jochum11, M. Junker, V. V. Kazalov2, Y. Kermaïdic4, Th. Kihm4, I. V. Kirpichnikov1, A. Kirsch4, A. Kish3, A. A. Klimenko9, A. A. Klimenko4, R. Kneißl4, K. T. Knöpfle4, O.I. Kochetov9, V. N. Kornoukhov1, V. N. Kornoukhov2, V. V. Kuzminov2, M. Laubenstein, A. Lazzaro8, Manfred Lindner4, Ivano Lippi, A. Lubashevskiy9, Bayarto Lubsandorzhiev2, Guillaume Lutter, C. Macolino, Bela Majorovits4, W. Maneschg4, M. Miloradovic3, R. Mingazheva3, M. Misiaszek7, P. Moseev2, Igor Nemchenok9, K. Panas7, Luciano Pandola, K. Pelczar, L. Pertoldi6, A. Pullia12, C. Ransom3, Stefano Riboldi12, N. Rumyantseva9, N. Rumyantseva1, Cinzia Sada6, F. Salamida13, C. Schmitt11, B. Schneider10, S. Schönert8, A.-K. Schütz11, O. Schulz4, B. Schwingenheuer4, O. Selivanenko2, E. Shevchik9, M. Shirchenko9, Hardy Simgen4, A.A. Smolnikov9, A.A. Smolnikov4, L. Stanco, L. Vanhoefer4, A. A. Vasenko1, A. V. Veresnikova2, K. von Sturm6, V. Wagner4, A. Wegmann4, T. Wester10, C. Wiesinger8, M. M. Wojcik7, E. A. Yanovich2, I. Zhitnikov9, S. V. Zhukov1, D. R. Zinatulina9, A. Zschocke11, Anna Julia Zsigmond4, Kai Zuber10, G. Zuzel7 
TL;DR: The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76]Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{ 76}Ge fraction in liquid argon with increased exposure for broad-energy germanium type (BEGe) detectors.
Abstract: The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.

Journal ArticleDOI
TL;DR: This work estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods and used the cohort-component method of population projection, with inputs of fertility, mortality, population, and migration data.

Journal ArticleDOI
TL;DR: UV touches the brain and central neuroendocrine system to reset body homeostasis, which invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.
Abstract: The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

Journal ArticleDOI
P. Agnes1, Ivone F. M. Albuquerque2, Thomas Alexander3, A. K. Alton4  +194 moreInstitutions (30)
TL;DR: The expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.
Abstract: We present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.

Journal ArticleDOI
TL;DR: Venetoclax achieves durable responses and was well tolerated in patients with 17p deleted relapsed/refractory chronic lymphocytic leukemia and a high rate of blood MRD < 10-4 was achieved in this high-risk population.
Abstract: Purpose Venetoclax is an orally bioavailable B-cell lymphoma 2 inhibitor. US Food and Drug Administration and European Medicines Agency approval for patients with 17p deleted relapsed/refractory chronic lymphocytic leukemia [del(17p) CLL] was based on results from 107 patients. An additional 51 patients were enrolled in a safety expansion cohort. Extended analysis of all enrolled patients, including the effect of minimal residual disease (MRD) negativity on outcome, is now reported. Patients and Methods Overall, 158 patients with relapsed/refractory or previously untreated (n = 5) del(17p) CLL received venetoclax 400 mg per day after an initial dose ramp up. Responses were based on 2008 International Workshop on Chronic Lymphocytic Leukemia criteria, with monthly physical exams and blood counts. Computed tomography scan was mandatory at week 36, after which assessment made was by clinical evaluation. Marrow biopsy was performed when complete remission was suspected. MRD was assessed by flow cytometry. Results Patients had a median of two prior therapies (range, zero to 10 therapies), 71% had TP53 mutation, and 48% had nodes that were ≥ 5 cm. Median time on venetoclax was 23.1 months (range, 0 to 44.2 months) and median time on study was 26.6 months (range, 0 to 44.2 months). For all patients, investigator-assessed objective response rate was 77% (122 of 158 patients; 20% complete remission) and estimated progression-free survival at 24 months was 54% (95% CI, 45% to 62%). For 16 patients who received prior kinase inhibitors, objective response rate was 63% (10 of 16 patients) and 24-month progression-free survival estimate was 50% (95% CI, 25% to 71%). By intent-to-treat analysis, 48 (30%) of 158 patients achieved MRD below the cutoff of 10-4 in blood. Common grade 3 and 4 adverse events were hematologic and managed with supportive care and/or dose adjustments. Conclusion Venetoclax achieves durable responses and was well tolerated in patients with del(17p) CLL. A high rate of blood MRD < 10-4 was achieved in this high-risk population.

Journal ArticleDOI
TL;DR: A major update of the CABS-flex web server to version 2.0, which includes extension of the method to significantly larger and multimeric proteins, customizable distance restraints and simulation parameters, contact maps and a new, enhanced web server interface.
Abstract: Classical simulations of protein flexibility remain computationally expensive, especially for large proteins. A few years ago, we developed a fast method for predicting protein structure fluctuations that uses a single protein model as the input. The method has been made available as the CABS-flex web server and applied in numerous studies of protein structure-function relationships. Here, we present a major update of the CABS-flex web server to version 2.0. The new features include: extension of the method to significantly larger and multimeric proteins, customizable distance restraints and simulation parameters, contact maps and a new, enhanced web server interface. CABS-flex 2.0 is freely available at http://biocomp.chem.uw.edu.pl/CABSflex2.

Journal ArticleDOI
13 Jun 2018-Nature
TL;DR: It is shown that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopin.
Abstract: G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the β2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2878 moreInstitutions (197)
TL;DR: The performance of the missing transverse momentum reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015.
Abstract: The performance of the missing transverse momentum ( ETmiss ) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct ETmiss , fully calibrated electrons, muons, photons, hadronically decaying τ-leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various ETmiss contributions. The individual terms as well as the overall reconstructed ETmiss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the ETmiss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2fb-1 .

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2981 moreInstitutions (220)
TL;DR: In this article, a search was performed for resonant and non-resonant Higgs boson pair production in the $ \upgamma \ upgamma b\overline{b} $ final state.
Abstract: A search is performed for resonant and non-resonant Higgs boson pair production in the $ \upgamma \upgamma b\overline{b} $ final state. The data set used corresponds to an integrated luminosity of 36.1 fb$^{−1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess relative to the Standard Model expectation is observed. The observed limit on the non-resonant Higgs boson pair cross-section is 0.73 pb at 95% confidence level. This observed limit is equivalent to 22 times the predicted Standard Model cross-section. The Higgs boson self-coupling (κ$_{λ}$ = λ$_{HHH}$/λ$_{HHH}^{SM}$ ) is constrained at 95% confidence level to −8.2 < κ$_{λ}$ < 13.2. For resonant Higgs boson pair production through $ X\to HH\to \upgamma \upgamma b\overline{b} $ , the limit is presented, using the narrow-width approximation, as a function of m$_{X}$ in the range 260 GeV < m$_{X}$ < 1000 GeV. The observed limits range from 1.1 pb to 0.12 pb over this mass range.

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2829 moreInstitutions (197)
TL;DR: In this paper, the mass of the $W$ boson was measured based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC.
Abstract: A measurement of the mass of the $W$ boson is presented based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb$^{-1}$ of integrated luminosity. The selected data sample consists of $7.8 \times 10^6$ candidates in the $W\rightarrow \mu u$ channel and $5.9 \times 10^6$ candidates in the $W\rightarrow e u$ channel. The $W$-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the $W$ boson transverse mass in the electron and muon decay channels, yielding \begin{eqnarray} m_W &=& 80370 \pm 7 \, (\textrm{stat.}) \pm 11 \, (\textrm{exp. syst.}) \pm 14 \, (\textrm{mod. syst.}) \, \textrm{MeV} &=& 80370 \pm 19 \, \textrm{MeV}, \end{eqnarray} where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the $W^+$ and $W^-$ bosons yields $m_{W^+}-m_{W^-} = -29 \pm 28$ MeV.

Journal ArticleDOI
Lorenzo Amati1, P. T. O'Brien2, Diego Götz3, Enrico Bozzo4  +223 moreInstitutions (87)
TL;DR: Theseus as mentioned in this paper is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics.

Journal ArticleDOI
TL;DR: In this paper, the HIrisPlex-S DNA test system (S for skin) was proposed for the simultaneous prediction of eye, hair, and skin colour from trace DNA, which can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling.
Abstract: Forensic DNA Phenotyping (FDP), i.e. the prediction of human externally visible traits from DNA, has become a fast growing subfield within forensic genetics due to the intelligence information it can provide from DNA traces. FDP outcomes can help focus police investigations in search of unknown perpetrators, who are generally unidentifiable with standard DNA profiling. Therefore, we previously developed and forensically validated the IrisPlex DNA test system for eye colour prediction and the HIrisPlex system for combined eye and hair colour prediction from DNA traces. Here we introduce and forensically validate the HIrisPlex-S DNA test system (S for skin) for the simultaneous prediction of eye, hair, and skin colour from trace DNA. This FDP system consists of two SNaPshot-based multiplex assays targeting a total of 41 SNPs via a novel multiplex assay for 17 skin colour predictive SNPs and the previous HIrisPlex assay for 24 eye and hair colour predictive SNPs, 19 of which also contribute to skin colour prediction. The HIrisPlex-S system further comprises three statistical prediction models, the previously developed IrisPlex model for eye colour prediction based on 6 SNPs, the previous HIrisPlex model for hair colour prediction based on 22 SNPs, and the recently introduced HIrisPlex-S model for skin colour prediction based on 36 SNPs. In the forensic developmental validation testing, the novel 17-plex assay performed in full agreement with the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines, as previously shown for the 24-plex assay. Sensitivity testing of the 17-plex assay revealed complete SNP profiles from as little as 63 pg of input DNA, equalling the previously demonstrated sensitivity threshold of the 24-plex HIrisPlex assay. Testing of simulated forensic casework samples such as blood, semen, saliva stains, of inhibited DNA samples, of low quantity touch (trace) DNA samples, and of artificially degraded DNA samples as well as concordance testing, demonstrated the robustness, efficiency, and forensic suitability of the new 17-plex assay, as previously shown for the 24-plex assay. Finally, we provide an update to the publically available HIrisPlex website https://hirisplex.erasmusmc.nl/ , now allowing the estimation of individual probabilities for 3 eye, 4 hair, and 5 skin colour categories from HIrisPlex-S input genotypes. The HIrisPlex-S DNA test represents the first forensically validated tool for skin colour prediction, and reflects the first forensically validated tool for simultaneous eye, hair and skin colour prediction from DNA.

Journal ArticleDOI
TL;DR: In this paper, the effect of Co 2+ ions doping on ZnFe 2 O 4 nanoparticles in terms of morphology, magnetic and optical properties was investigated in a co-precipitation method.

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Peter Davison2, Samuel Webb3  +2897 moreInstitutions (195)
TL;DR: A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles.
Abstract: A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton–proton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons, direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons, and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons.

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Ovsat Abdinov3  +2935 moreInstitutions (198)
TL;DR: Combined 95% confidence-level upper limits are set on the production cross section for a range of vectorlike quark scenarios, significantly improving upon the reach of the individual searches.
Abstract: A combination of the searches for pair-produced vectorlike partners of the top and bottom quarks in various decay channels (T -> Zt/Wb/Ht, B -> Zb/Wt/Hb) is performed using 36.1 fb(-1) of pp ...

Journal ArticleDOI
TL;DR: The requirements for a future CMB polarisation survey addressing these scientific objectives are listed, and the design drivers of the COREmfive space mission proposed to ESA in answer to the "M5" call for a medium-sized mission are discussed.
Abstract: Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ΛCDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the COREmfive space mission proposed to ESA in answer to the "M5" call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. COREmfive has 19 frequency channels, distributed over a broad frequency range, spanning the 60–600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 μK⋅arcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10−4 of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. COREmfive observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. COREmfive is designed as a "near-ultimate" CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300–600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize.

Journal ArticleDOI
TL;DR: Three temporal aspects of the simulator sickness are discussed: the temporal trajectory of the progression of simulator sickness, possibility of adapting VR users in advance and persistence of the symptoms after VR exposure.
Abstract: Simulator sickness is a syndrome similar to motion sickness, often experienced during simulator or another virtual reality (VR) exposure. Many theories have been developed or adapted from the motion sickness studies, in order to explain the existence of the syndrome. The simulator sickness can be measured using both subjective and objective methods. The most popular self-report method is the Simulator Sickness Questionnaire. Attempts have also been made to discover a physiological indicator of the described syndrome, but no definite conclusion has been reached on this issue. In the present paper, three temporal aspects of the simulator sickness are discussed: the temporal trajectory of the progression of simulator sickness, possibility of adapting VR users in advance and persistence of the symptoms after VR exposure. Evidence found in 39 articles is widely described. As for the first aspect, it is clear that in most cases severity of the simulator sickness symptoms increases with time of exposure, although it is impossible to develop a single, universal pattern for this effect. It has also been proved, that in some cases a threshold level or time point exists, after which the symptoms stop increasing or begin to decrease. The adaptation effect was proved in most of the reviewed studies and observed in different study designs - e.g., with a couple of VR exposures on separate days or on 1 day and with a single, prolonged VR exposure. As for the persistence of the simulator sickness symptoms after leaving the VR, on the whole the study results suggest that such an effect exists, but it varies strongly between individual studies - the symptoms may persist for a short period of time (10 min) or a relatively long one (even 4 h). Considering the conclusions reached in the paper, it is important to bear in mind that the virtual reality technology still evokes unpleasant sensations in its users and that these sensations should be cautiously controlled while developing new VR tools. Certainly, more research on this topic is necessary.