scispace - formally typeset
Search or ask a question
Institution

Jagiellonian University

EducationKrakow, Poland
About: Jagiellonian University is a education organization based out in Krakow, Poland. It is known for research contribution in the topics: Population & Catalysis. The organization has 17438 authors who have published 44092 publications receiving 862633 citations. The organization is also known as: Academia Cracoviensis & Akademia Krakowska.


Papers
More filters
Journal ArticleDOI
TL;DR: The comparison of the experimental and theoretical results shows that microwave networks can simulate quantum graphs with time reversal symmetry, and the experimental results indicate that spectral statistics of directional microwave networks deviate from predictions of Gaussian orthogonal ensembles in random matrix theory approaching.
Abstract: We present the results of experimental and theoretical study of irregular, tetrahedral microwave networks consisting of coaxial cables (annular waveguides) connected by T joints. The spectra of the networks were measured in the frequency range 0.0001‐ 16 GHz in order to obtain their statistical properties such as the integrated nearest neighbor spacing distribution and the spectral rigidity D3sLd. The comparison of our experimental and theoretical results shows that microwave networks can simulate quantum graphs with time reversal symmetry. In particular, we use the spectra of the microwave networks to study the periodic orbits of the simulated quantum graphs. We also present experimental study of directional microwave networks consisting of coaxial cables and Faraday isolators for which the time reversal symmetry is broken. In this case our experimental results indicate that spectral statistics of directional microwave networks deviate from predictions of Gaussian orthogonal ensembles in random matrix theory approaching, especially for small eigenfrequency spacing s, results for Gaussian unitary ensembles. Experimental results are supported by the theoretical analysis of directional graphs.

140 citations

Journal ArticleDOI
Morad Aaboud, Alexander Kupco1, Samuel Webb2, Timo Dreyer3  +2969 moreInstitutions (195)
TL;DR: Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this article, these algorithms a...
Abstract: Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms a ...

140 citations

Journal ArticleDOI
TL;DR: It is concluded that OFM constitute a unique class of electronic materials with characteristics and advantages that are distinct from either conventional inorganic semiconductors or organic conductors, and suggests a bright future for these materials in applications such as edge computing, resistive switching, and mechanically flexible sensing and electronics.
Abstract: Open framework materials (OFM) constitute a large and growing class of nanoporous crystalline structures that is attracting considerable attention for electronic device applications. This review summarizes the most recent reports concerning electronic devices enabled by either of the two primary categories of OFM, metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). Devices in which the OFM plays an active role (as opposed to acting only as a selective sorbent or filter) are the principal focus, with examples cited that include field-effect transistors, capacitors, memristors, and a wide variety of sensing architectures. As a brief tutorial, we also provide a concise summary of various methods of depositing or growing OFM on surfaces, as these are of crucial importance to the deployment of electronic OFM. Finally, we offer our perspective concerning future research directions, particularly regarding what in our view are the biggest challenges remaining to be addressed. On the basis of the literature discussed here, we conclude that OFM constitute a unique class of electronic materials with characteristics and advantages that are distinct from either conventional inorganic semiconductors or organic conductors. This suggests a bright future for these materials in applications such as edge computing, resistive switching, and mechanically flexible sensing and electronics.

140 citations

Journal ArticleDOI
TL;DR: It is suggested that epistasis is likely to diminish the negative effects of mutations when the ability to produce biomass at high rates contributes significantly to fitness.
Abstract: Interactions between deleterious mutations have been insufficiently studied1,2, despite the fact that their strength and direction are critical for understanding the evolution of genetic recombination3,4 and the buildup of mutational load in populations5,6. We compiled a list of 758 yeast gene deletions causing growth defects (from the Munich Information Center for Protein Sequences database and ref. 7). Using BY4741 and BY4742 single-deletion strains, we carried out 639 random crosses and assayed growth curves of the resulting progeny. We show that the maximum growth rate averaged over strains lacking deletions and those with double deletions is higher than that of strains with single deletions, indicating a positive epistatic effect. This tendency is shared by genes belonging to a variety of functional classes. Based on our data and former theoretical work8,9,10, we suggest that epistasis is likely to diminish the negative effects of mutations when the ability to produce biomass at high rates contributes significantly to fitness.

140 citations

Journal ArticleDOI
TL;DR: The goal was to achieve complete elimination of antibiotic resistant and biofilm forming strains of Staphylococcus aureus after short contact times and it was demonstrated that uncontrolled release of silver nanoparticles from the chitosan films is prevented.
Abstract: In this work different variables have been analyzed in order to optimize the bactericidal properties of chitosan films loaded with silver nanoparticles. The goal was to achieve complete elimination of antibiotic resistant and biofilm forming strains of Staphylococcus aureus after short contact times. The films were produced by solution casting using chitosan as both a stabilizing and reducing agent for the in situ synthesis of embedded silver nanoparticles. We have applied an innovative approach: the influence of the chitosan molecular weight and its deacetylation degree (DD) were analyzed together with the influence of the bacterial concentration and contact time. The best results were obtained with high DD chitosan where a fast reduction was favored; leading to smaller nanoparticles (nucleation is promoted), and a sufficiently high polymer viscosity prevented the resulting nanoparticles from undesired agglomeration. In addition, for the first time, potential detachment of the silver nanoparticles from the films was evaluated and neglected, demonstrating that uncontrolled release of silver nanoparticles from the chitosan films is prevented. The influence of the ionic silver released from the films, silver loading, nanoparticle sizes, contact, and initial number of bacteria was also analyzed to elucidate the mechanism responsible for the strong bactericidal action observed.

140 citations


Authors

Showing all 17729 results

NameH-indexPapersCitations
Roxana Mehran141137899398
Brad Abbott137156698604
M. Morii1341664102074
M. Franklin134158195304
John Huth131108785341
Wladyslaw Dabrowski12999079728
Rostislav Konoplich12881173790
Michel Vetterli12890176064
Francois Corriveau128102275729
Christoph Falk Anders12673468828
Tomasz Bulik12169886211
Elzbieta Richter-Was11879369127
S. H. Robertson116131158582
S. J. Chen116155962804
David M. Stern10727147461
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

90% related

University of Milan
139.7K papers, 4.6M citations

90% related

University of Turin
77.9K papers, 2.4M citations

89% related

University of Padua
114.8K papers, 3.6M citations

89% related

University of Vienna
95.8K papers, 2.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022510
20212,769
20202,777
20192,736
20182,735