scispace - formally typeset
Search or ask a question
Institution

Jagiellonian University

EducationKrakow, Poland
About: Jagiellonian University is a education organization based out in Krakow, Poland. It is known for research contribution in the topics: Population & Catalysis. The organization has 17438 authors who have published 44092 publications receiving 862633 citations. The organization is also known as: Academia Cracoviensis & Akademia Krakowska.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present four X-ray/gamma-ray spectra of Cyg X-1 observed in the hard ('low') state simultaneously by Ginga and GRO/OSSE on 1991 July 6.
Abstract: We present four X-ray/gamma-ray spectra of Cyg X-1 observed in the hard ('low') state simultaneously by Ginga and GRO/OSSE on 1991 July 6. The 3-30 keV Ginga spectra are well represented by power laws with an energy spectral index of alpha~0.6 and a Compton reflection component including a fluorescent Fe K-alpha corresponding to the solid angle of the reflector of ~0.3 times 2 Pi. The overall Ginga/OSSE spectra can be modelled by repeated Compton scattering in a mildly-relativistic, tau ~1, plasma. However, the high-energy cutoff is steeper than that due to single-temperature thermal Comptonisation. It can be described by a superposition of dominant optically-thin, thermal emission at kT~140 keV and a Wien-like component from an optically-thick plasma at kT~50 keV. The X-ray spectra do not show the presence of an anisotropy break required if thermal Compton scattering takes place in a corona above a cold disc. Also, the flat spectral index shows that the plasma is soft-photon starved, i.e., the luminosity in incident soft X-ray seed photons is very much less than that in the hard X-rays. Furthermore, the observed solid angle of the reflector is significantly less than 2 pi. These facts taken together strongly rule out a disc-corona geometry. Rather, the observed spectra are consistent with a geometry in which the cold accretion disc (which both supplies the seed soft X-rays and reflects hard X-rays) only exists at large radii, while the Comptonising hot plasma is located in an inner region with no cold disc. This hot plasma consists of either pure electron-positron pairs if the source size is ~5 Schwarzschild radii or it contains also protons if the size is larger.

282 citations

Journal ArticleDOI
TL;DR: Probiotics and prebiotics can be utilized either separately or jointly (as synbiotics or eubiotics).
Abstract: Probiotics, bacteria from the genera Bifidobacterium and Lactobacillus, and yeast, Saccharomyces, as well as prebiotics belonging to the group of dietary fiber (inulin with low degree of polymerization, fructose-derived oligosaccharides, and resistant starch) are natural factors useful in prophylaxis and therapy of several common diseases including some types of cancer. They are available commercially and can be introduced to produce so-called functional food. Probiotics and prebiotics can be utilized either separately or jointly (as synbiotics or eubiotics). Mechanisms of both biotics are discussed. The role of cereals in probiosis is considered. Possibilities for extension of the uses of the original Chinese probiotic, chaw tofu, are also considered.

281 citations

Journal ArticleDOI
TL;DR: In this article, an ultracold atomic cloud bouncing on an oscillating mirror can reveal spontaneous breaking of a discrete time-translation symmetry, which can be induced by atomic losses or by a measurement of particle positions.
Abstract: We show that an ultracold atomic cloud bouncing on an oscillating mirror can reveal spontaneous breaking of a discrete time-translation symmetry. In many-body simulations, we illustrate the process of the symmetry breaking that can be induced by atomic losses or by a measurement of particle positions. The results pave the way for understanding and realization of the time crystal idea where crystalline structures form in the time domain due to spontaneous breaking of continuous time-translation symmetry.

281 citations

Journal ArticleDOI
TL;DR: Large variations in reperfusion treatment are still present across Europe, and countries in Eastern and Southern Europe reported that a substantial number of STEMI patients are not receiving any reperfusions therapy.
Abstract: Aims Primary percutaneous coronary intervention (PPCI) is the preferred reperfusion therapy in ST-elevation myocardial infarction (STEMI). We conducted this study to evaluate the contemporary status on the use and type of reperfusion therapy in patients admitted with STEMI in the European Society of Cardiology (ESC) member countries. Methods and results A cross-sectional descriptive study based on aggregated country-level data on the use of reperfusion therapy in patients admitted with STEMI during 2010 or 2011. Thirty-seven ESC countries were able to provide data from existing national or regional registries. In countries where no such registries exist, data were based on best expert estimates. Data were collected on the use of STEMI reperfusion treatment and mortality, the numbers of cardiologists, and the availability of PPCI facilities in each country. Our survey provides a brief data summary of the degree of variation in reperfusion therapy across Europe. The number of PPCI procedures varied between countries, ranging from 23 to 884 per million inhabitants. Primary percutaneous coronary intervention and thrombolysis were the dominant reperfusion strategy in 33 and 4 countries, respectively. The mean population served by a single PPCI centre with a 24-h service 7 days a week ranged from 31 300 inhabitants per centre to 6 533 000 inhabitants per centre. Twenty-seven of the total 37 countries participated in a former survey from 2007, and major increases in PPCI utilization were observed in 13 of these countries. Conclusion Large variations in reperfusion treatment are still present across Europe. Countries in Eastern and Southern Europe reported that a substantial number of STEMI patients are not receiving any reperfusion therapy. Implementation of the best reperfusion therapy as recommended in the guidelines should be encouraged.

280 citations

Journal ArticleDOI
T. O. Ablyazimov1, A. Abuhoza, R. P. Adak2, M. Adamczyk3  +599 moreInstitutions (50)
TL;DR: The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates.
Abstract: Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 ( $\sqrt{s_{NN}}=$ 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( $\mu_B > 500$ MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

279 citations


Authors

Showing all 17729 results

NameH-indexPapersCitations
Roxana Mehran141137899398
Brad Abbott137156698604
M. Morii1341664102074
M. Franklin134158195304
John Huth131108785341
Wladyslaw Dabrowski12999079728
Rostislav Konoplich12881173790
Michel Vetterli12890176064
Francois Corriveau128102275729
Christoph Falk Anders12673468828
Tomasz Bulik12169886211
Elzbieta Richter-Was11879369127
S. H. Robertson116131158582
S. J. Chen116155962804
David M. Stern10727147461
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

90% related

University of Milan
139.7K papers, 4.6M citations

90% related

University of Turin
77.9K papers, 2.4M citations

89% related

University of Padua
114.8K papers, 3.6M citations

89% related

University of Vienna
95.8K papers, 2.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022510
20212,769
20202,776
20192,736
20182,735