scispace - formally typeset
Search or ask a question

Showing papers by "James Cook University published in 2019"


Journal ArticleDOI
TL;DR: This article illustrates how a framework for a research study design can be used to guide and inform the novice nurse researcher undertaking a study using grounded theory.
Abstract: Background:Grounded theory is a well-known methodology employed in many research studies. Qualitative and quantitative data generation techniques can be used in a grounded theory study. Grounded th...

700 citations


Journal ArticleDOI
TL;DR: Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.
Abstract: Vehicular networks enable vehicles to generate and broadcast messages in order to improve traffic safety and efficiency. However, due to the nontrusted environments, it is difficult for vehicles to evaluate the credibilities of received messages. In this paper, we propose a decentralized trust management system in vehicular networks based on blockchain techniques. In this system, vehicles can validate the received messages from neighboring vehicles using Bayesian Inference Model. Based on the validation result, the vehicle will generate a rating for each message source vehicle. With the ratings uploaded from vehicles, roadside units (RSUs) calculate the trust value offsets of involved vehicles and pack these data into a “block.” Then, each RSU will try to add their “blocks” to the trust blockchain which is maintained by all the RSUs. By employing the joint proof-of-work (PoW) and proof-of-stake consensus mechanism, the more total value of offsets (stake) is in the block, the easier RSU can find the nonce for the hash function (PoW). In this way, all RSUs collaboratively maintain an updated, reliable, and consistent trust blockchain. Simulation results reveal that the proposed system is effective and feasible in collecting, calculating, and storing trust values in vehicular networks.

650 citations


Book ChapterDOI
TL;DR: This chapter describes the pre-test conditions, the materials required and the protocol for conducting and interpreting the results of these two related tests of spatial working memory and spontaneous alternation in mice.
Abstract: The Y-maze can be used to assess short term memory in mice. Spontaneous alternation, a measure of spatial working memory, can be assessed by allowing mice to explore all three arms of the maze and is driven by an innate curiosity of rodents to explore previously unvisited areas. A mouse with intact working memory, and hence intact prefrontal cortical functions, will remember the arms previously visited and show a tendency to enter a less recently visited arm. Spatial reference memory, which is underlined by the hippocampus, can also be tested by placing the test mice into the Y-maze with one arm closed off during training. After an intertrial interval of for example 1 h, the mouse should remember which arm it has not explored previously and should visit this arm more often. This chapter describes the pre-test conditions, the materials required and the protocol for conducting and interpreting the results of these two related tests.

439 citations


Journal ArticleDOI
22 Nov 2019
TL;DR: There is considerable scope for improved efficiency in fed aquaculture and the development and optimization of alternative protein sources for aquafeeds to ensure a socially and environmentally sustainable future for the Aquaculture industry.
Abstract: Approximately 70% of the aquatic-based production of animals is fed aquaculture, whereby animals are provided with high-protein aquafeeds. Currently, aquafeeds are reliant on fish meal and fish oil sourced from wild-captured forage fish. However, increasing use of forage fish is unsustainable and, because an additional 37.4 million tons of aquafeeds will be required by 2025, alternative protein sources are needed. Beyond plant-based ingredients, fishery and aquaculture byproducts and insect meals have the greatest potential to supply the protein required by aquafeeds over the next 10–20 years. Food waste also has potential through the biotransformation and/or bioconversion of raw waste materials, whereas microbial and macroalgal biomass have limitations regarding their scalability and protein content, respectively. In this review, we describe the considerable scope for improved efficiency in fed aquaculture and discuss the development and optimization of alternative protein sources for aquafeeds to ensure a socially and environmentally sustainable future for the aquaculture industry.

369 citations


Journal ArticleDOI
03 Oct 2019-Nature
TL;DR: Using the concentration of 7 nutrients in more than 350 species of marine fish, this predictive model is used to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations.
Abstract: Micronutrient deficiencies account for an estimated one million premature deaths annually, and for some nations can reduce gross domestic product1,2 by up to 11%, highlighting the need for food policies that focus on improving nutrition rather than simply increasing the volume of food produced3. People gain nutrients from a varied diet, although fish—which are a rich source of bioavailable micronutrients that are essential to human health4—are often overlooked. A lack of understanding of the nutrient composition of most fish5 and how nutrient yields vary among fisheries has hindered the policy shifts that are needed to effectively harness the potential of fisheries for food and nutrition security6. Here, using the concentration of 7 nutrients in more than 350 species of marine fish, we estimate how environmental and ecological traits predict nutrient content of marine finfish species. We use this predictive model to quantify the global spatial patterns of the concentrations of nutrients in marine fisheries and compare nutrient yields to the prevalence of micronutrient deficiencies in human populations. We find that species from tropical thermal regimes contain higher concentrations of calcium, iron and zinc; smaller species contain higher concentrations of calcium, iron and omega-3 fatty acids; and species from cold thermal regimes or those with a pelagic feeding pathway contain higher concentrations of omega-3 fatty acids. There is no relationship between nutrient concentrations and total fishery yield, highlighting that the nutrient quality of a fishery is determined by the species composition. For a number of countries in which nutrient intakes are inadequate, nutrients available in marine finfish catches exceed the dietary requirements for populations that live within 100 km of the coast, and a fraction of current landings could be particularly impactful for children under 5 years of age. Our analyses suggest that fish-based food strategies have the potential to substantially contribute to global food and nutrition security. Nutrient content analyses of marine finfish and current fisheries landings show that fish have the potential to substantially contribute to global food and nutrition security by alleviating micronutrient deficiencies in regions where they are prevalent.

355 citations


Journal ArticleDOI
TL;DR: This Review discusses the latest findings and current theories on the pathogenesis of abdominal aortic aneurysm (AAA) and highlights potential medical therapies for AAA, summarizing previous, ongoing, and potential clinical trials of medical interventions for small AAAs.
Abstract: Abdominal aortic aneurysm (AAA) rupture is an important cause of death in adults. Currently, the only treatment for AAA is open or endovascular surgical repair. In most parts of the developed world, AAAs can be identified at an early stage as a result of incidental imaging and screening programmes. Randomized clinical trials have demonstrated that early elective surgical repair of these small AAAs is not beneficial, and an unmet clinical need exists to develop medical therapies for small AAAs that limit or prevent the progressive expansion and rupture of the aneurysm. A large amount of research is currently being performed to increase the understanding of AAA pathogenesis and ultimately lead to the development of medical therapies, such as drug-based and cell-based strategies for this disease. This Review summarizes the latest research findings and current theories on AAA pathogenesis, including discussion of the pros and cons of current rodent models of AAA, and highlights potential medical therapies for AAA, summarizing previous, ongoing and potential clinical trials of medical interventions for small AAAs. This expanding volume of research on AAA is expected to result in a range of novel medical therapies for AAA within the next decade.

337 citations


Journal ArticleDOI
TL;DR: The need for cross-disciplinary collaborations is advocated to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions.
Abstract: How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental chang...

315 citations


Journal ArticleDOI
18 Apr 2019-Nature
TL;DR: The collapse in stock–recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs.
Abstract: Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1–3. In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures4,5. Here we document a regional-scale shift in stock–recruitment relationships of corals along the Great Barrier Reef—the world’s largest coral reef system—following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress6, the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock–recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock–recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades7. A regional-scale shift in the relationships between adult stock and recruitment of corals occurred along the Great Barrier Reef, following mass bleaching events in 2016 and 2017 caused by global warming.

310 citations


Journal ArticleDOI
TL;DR: This comprehensive systematic review investigates and recommends acid extraction, ultrafiltration, sugar constituent and molecular weight analysis for the extraction, purification, and characterisation of ulvan, respectively.
Abstract: Species of green macroalgae (Chlorophyta) of the genus Ulva are edible seaweeds with a range of health promoting bioactive components. Ulva is high in dietary fibre which promotes gastrointestinal health and is linked to a reduction in the incidence of chronic diseases. The fundamental active constituent of Ulva is the soluble fibre ulvan, a gelling sulfated polysaccharide with biological activities including immunomodulating, antiviral, antioxidant, antihyperlipidemic and anticancer. Ulvan also has the capacity to modulate cellular signalling processes in both plant and animal systems leading to beneficial effects on productivity and health. Consequently, ulvan is of significant interest as a constituent in human health, agricultural, and biomaterial products. This comprehensive systematic review investigates and recommends acid extraction, ultrafiltration, sugar constituent and molecular weight analysis for the extraction, purification, and characterisation of ulvan, respectively. The biological activities of ulvans are then critically reviewed.

287 citations


Book ChapterDOI
TL;DR: This chapter describes a protocol for carrying out the open-field test for assessment of locomotion and anxiety-like behavior in mice.
Abstract: The open field test is used in studies of the neurobiological basis of anxiety and screening for novel drug targets and anxiolytic compounds. This test uses a camera to measure movement of the test animal in the peripheral and central zones of a 42 x 42 x 42 cm polyvinyl chloride box. This chapter describes a protocol for carrying out the open-field test for assessment of locomotion and anxiety-like behavior in mice.

272 citations


Journal ArticleDOI
Adriane Esquivel-Muelbert1, Timothy R. Baker1, Kyle G. Dexter2, Simon L. Lewis3, Simon L. Lewis1, Roel J. W. Brienen1, Ted R. Feldpausch4, Jon Lloyd5, Abel Monteagudo-Mendoza6, Luzmila Arroyo7, Esteban Álvarez-Dávila, Niro Higuchi8, Beatriz Schwantes Marimon9, Ben Hur Marimon-Junior9, Marcos Silveira10, Emilio Vilanova11, Emilio Vilanova12, Emanuel Gloor1, Yadvinder Malhi13, Jérôme Chave14, Jos Barlow15, Jos Barlow16, Damien Bonal17, Nallaret Davila Cardozo18, Terry L. Erwin19, Sophie Fauset1, Bruno Hérault20, Susan G. Laurance21, Lourens Poorter22, Lan Qie5, Clément Stahl23, Martin J. P. Sullivan1, Hans ter Steege24, Hans ter Steege25, Vincent A. Vos, Pieter A. Zuidema22, Everton Cristo de Almeida26, Edmar Almeida de Oliveira9, Ana Andrade8, Simone Aparecida Vieira27, Luiz E. O. C. Aragão4, Luiz E. O. C. Aragão28, Alejandro Araujo-Murakami7, Eric Arets22, Gerardo A. Aymard C, Christopher Baraloto29, Plínio Barbosa de Camargo30, Jorcely Barroso10, Frans Bongers22, René G. A. Boot31, José Luís Camargo8, Wendeson Castro10, Victor Chama Moscoso6, James A. Comiskey19, Fernando Cornejo Valverde32, Antonio Carlos Lola da Costa33, Jhon del Aguila Pasquel32, Jhon del Aguila Pasquel34, Anthony Di Fiore35, Luisa Fernanda Duque, Fernando Elias9, Julien Engel20, Julien Engel29, Gerardo Flores Llampazo, David W. Galbraith1, Rafael Herrera Fernández36, Rafael Herrera Fernández37, Eurídice N. Honorio Coronado34, Wannes Hubau38, Eliana Jimenez-Rojas39, Adriano José Nogueira Lima8, Ricardo Keichi Umetsu9, William F. Laurance21, Gabriela Lopez-Gonzalez1, Thomas E. Lovejoy40, Omar Aurelio Melo Cruz41, Paulo S. Morandi9, David A. Neill, Percy Núñez Vargas6, Nadir Pallqui Camacho6, Alexander Parada Gutierrez, Guido Pardo, Julie Peacock1, Marielos Peña-Claros22, Maria Cristina Peñuela-Mora, Pascal Petronelli14, Georgia Pickavance1, Nigel C. A. Pitman, Adriana Prieto42, Carlos A. Quesada8, Hirma Ramírez-Angulo11, Maxime Réjou-Méchain43, Zorayda Restrepo Correa, Anand Roopsind44, Agustín Rudas42, Rafael de Paiva Salomão16, Natalino Silva, Javier Silva Espejo45, James Singh46, Juliana Stropp47, John Terborgh48, Raquel Thomas44, Marisol Toledo7, Armando Torres-Lezama11, Luis Valenzuela Gamarra, Peter J. van de Meer49, Geertje M. F. van der Heijden50, Peter van der Hout, Rodolfo Vásquez Martínez, César I.A. Vela6, Ima Célia Guimarães Vieira16, Oliver L. Phillips1 
University of Leeds1, University of Edinburgh2, University College London3, University of Exeter4, Imperial College London5, National University of Saint Anthony the Abbot in Cuzco6, Universidad Autónoma Gabriel René Moreno7, National Institute of Amazonian Research8, Universidade do Estado de Mato Grosso9, Universidade Federal do Acre10, University of Los Andes11, University of Washington12, Environmental Change Institute13, Centre national de la recherche scientifique14, Lancaster University15, Museu Paraense Emílio Goeldi16, University of Lorraine17, Universidad Nacional de la Amazonía Peruana18, Smithsonian Institution19, University of Montpellier20, James Cook University21, Wageningen University and Research Centre22, Agro ParisTech23, Naturalis24, University of Amsterdam25, Federal University of Western Pará26, State University of Campinas27, National Institute for Space Research28, Florida International University29, University of São Paulo30, Tropenbos International31, Amazon.com32, Federal University of Pará33, Michigan Technological University34, University of Texas at Austin35, Venezuelan Institute for Scientific Research36, Polytechnic University of Valencia37, Royal Museum for Central Africa38, Tecnológico de Antioquia39, George Mason University40, Universidad del Tolima41, National University of Colombia42, Paul Sabatier University43, Georgetown University44, University of La Serena45, Forestry Commission46, Federal University of Alagoas47, Duke University48, Van Hall Larenstein University of Applied Sciences49, University of Nottingham50
TL;DR: A slow shift to a more dry‐affiliated Amazonia is underway, with changes in compositional dynamics consistent with climate‐change drivers, but yet to significantly impact whole‐community composition.
Abstract: Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate‐induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long‐term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water‐deficit affiliation and wood density. Tree communities have become increasingly dominated by large‐statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry‐affiliated genera have become more abundant, while the mortality of wet‐affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry‐affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate‐change drivers, but yet to significantly impact whole‐community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large‐statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.

Journal ArticleDOI
TL;DR: In this paper, the authors present a data-driven global quantification of the eCO(2) effect on biomass based on 138 eCO2 (eCO 2 ) experiments, showing that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 +/- 3% above current values.
Abstract: Elevated CO2 (eCO(2)) experiments provide critical information to quantify the effects of rising CO2 on vegetation 1-6 . Many eCO(2) experiments suggest that nutrient limitations modulate the local magnitude of the eCO(2) effect on plant biomass(1,3,5), but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO27,9. Here, we present a data-driven global quantification of the eCO(2) effect on biomass based on 138 eCO(2) experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in similar to 65% of global vegetation and by phosphorus (P) in similar to 25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 +/- 3% above current values, equivalent to 59 +/- 13 PgC. The globalscale response to eCO(2) we derive from experiments is similar to past changes in greenness(9) and bio-mass(10) with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO(2) that may help to constrain climate projections.

Journal ArticleDOI
TL;DR: In this paper, the authors show the emergence of ecological memory during unprecedented back-to-back mass bleaching of corals along the 2,300 km length of the Great Barrier Reef in 2016 and again in 2017, whereby the impacts of the second severe heatwave, and its geographic footprint, were contingent on the first.
Abstract: Climate change is radically altering the frequency, intensity and spatial scale of severe weather events, such as heatwaves, droughts, floods and fires1. As the time interval shrinks between recurrent shocks2–5, the responses of ecosystems to each new disturbance are increasingly likely to be contingent on the history of other recent extreme events. Ecological memory—defined as the ability of the past to influence the present trajectory of ecosystems6,7—is also critically important for understanding how species assemblages are responding to rapid changes in disturbance regimes due to anthropogenic climate change2,3,6–8. Here, we show the emergence of ecological memory during unprecedented back-to-back mass bleaching of corals along the 2,300 km length of the Great Barrier Reef in 2016, and again in 2017, whereby the impacts of the second severe heatwave, and its geographic footprint, were contingent on the first. Our results underscore the need to understand the strengthening interactions among sequences of climate-driven events, and highlight the accelerating and cumulative impacts of novel disturbance regimes on vulnerable ecosystems. The increasing frequency of marine heatwaves suggests that the impacts of successive events may be influenced by previous events. The extent of the 2016 and 2017 bleaching events on the Great Barrier Reef shows that ecological memory played a role in the impacts of the second heatwave.

Journal ArticleDOI
TL;DR: The results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts.
Abstract: Although the early coral reef-bleaching warning system (NOAA/USA) is established, there is no feasible treatment that can minimize temperature bleaching and/or disease impacts on corals in the field. Here, we present the first attempts to extrapolate the widespread and well-established use of bacterial consortia to protect or improve health in other organisms (e.g., humans and plants) to corals. Manipulation of the coral-associated microbiome was facilitated through addition of a consortium of native (isolated from Pocillopora damicornis and surrounding seawater) putatively beneficial microorganisms for corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related species strains. The results from a controlled aquarium experiment in two temperature regimes (26 °C and 30 °C) and four treatments (pBMC; pBMC with pathogen challenge – Vibrio coralliilyticus, VC; pathogen challenge, VC; and control) revealed the ability of the pBMC consortium to partially mitigate coral bleaching. Significantly reduced coral-bleaching metrics were observed in pBMC-inoculated corals, in contrast to controls without pBMC addition, especially challenged corals, which displayed strong bleaching signs as indicated by significantly lower photopigment contents and Fv/Fm ratios. The structure of the coral microbiome community also differed between treatments and specific bioindicators were correlated with corals inoculated with pBMC (e.g., Cobetia sp.) or VC (e.g., Ruegeria sp.). Our results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts.

Journal ArticleDOI
TL;DR: A hybrid ensemble deep learning framework is proposed to forecast short-term photovoltaic power generation in a time series manner and adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting.
Abstract: Photovoltaic power generation forecasting is an important topic in the field of sustainable power system design, energy conversion management, and smart grid construction. Difficulties arise while the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast short-term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic power generation datasets. Three error metrics were adopted to compare the forecasting results produced by attention LSTM model with state-of-art methods, including the persistent model, the auto-regressive integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness and robustness of the proposed method.

Journal ArticleDOI
TL;DR: A broad range of case studies from diverse marine taxa are compiled to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats.
Abstract: There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.

Journal ArticleDOI
Nuno Queiroz1, Nuno Queiroz2, Nicolas E. Humphries2, Ana Rita Couto1  +163 moreInstitutions (61)
22 Aug 2019-Nature
TL;DR: It is concluded that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas), demonstrating an urgent need for conservation and management measures at high-seas hotspots of shark space use.
Abstract: Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.

Journal ArticleDOI
TL;DR: In this article, the authors argue that SSF are being subtly and overtly squeezed for geographic, political and economic space by larger scale economic and environmental conservation interests, jeopardizing the substantial benefits SSF provide through the livelihoods of millions of women and men, for the food security of around four billion consumers globally, and in the developing world, as a key source of micronutrients and protein for over a billion low-income consumers.
Abstract: The vast developmental opportunities offered by the world's coasts and oceans have attracted the attention of governments, private enterprises, philanthropic organizations, and international conservation organizations. High-profile dialogue and policy decisions on the future of the ocean are informed largely by economic and ecological research. Key insights from the social sciences raise concerns for food and nutrition security, livelihoods and social justice, but these have yet to gain traction with investors and the policy discourse on transforming ocean governance. The largest group of ocean-users - women and men who service, fish and trade from small-scale fisheries (SSF) - argue that they have been marginalized from the dialogue between international environmental and economic actors that is determining strategies for the future of the ocean. Blue Economy or Blue Growth initiatives see the ocean as the new economic frontier and imply an alignment with social objectives and SSF concerns. Deeper analysis reveals fundamental differences in ideologies, priorities and approaches. We argue that SSF are being subtly and overtly squeezed for geographic, political and economic space by larger scale economic and environmental conservation interests, jeopardizing the substantial benefits SSF provide through the livelihoods of millions of women and men, for the food security of around four billion consumers globally, and in the developing world, as a key source of micro-nutrients and protein for over a billion low-income consumers. Here, we bring insights from social science and SSF to explore how ocean governance might better account for social dimensions of fisheries.

Journal ArticleDOI
TL;DR: A universal operational definition of the term 'function' is proposed that works from a cellular to a global level and is the movement or storage of energy or material, which is part of a continuum that is tied together by the process-based unifier of material fluxes.
Abstract: The inherent complexity of high-diversity systems can make them particularly difficult to understand. The relatively recent introduction of functional approaches, which seek to infer ecosystem functioning based on species' ecological traits, has revolutionized our understanding of these high-diversity systems. Today, the functional structure of an assemblage is widely regarded as a key indicator of the status or resilience of an ecosystem. Indeed, functional evaluations have become a mainstay of monitoring and management approaches. But is the heavy focus on broad metrics of functional structure grounded in empirical research? On tropical coral reefs, the ocean's most diverse ecosystems, remarkably few studies directly quantify ecosystem functions and the term 'function' is widely used but rarely defined, especially when applied to reef fishes. Our review suggests that most 'functional' studies do not study function as it relates to ecological processes. Rather, they look at easy-to-measure traits or proxies that are thought to have functional significance. However, these links are rarely tested empirically, severely limiting our capacity to extend results from community structure to the dynamic processes operating within high-diversity ecosystems such as coral reefs. With rapid changes in global ecosystems, and in their capacity to deliver ecosystem services, there is an urgent need to understand and empirically measure the role of organisms in various ecosystem functions. We suggest that if we are to understand and manage transitioning coral reefs in the Anthropocene, a broad definition of the word 'function' is needed along with a focus on ecological processes and the empirical quantification of functional roles. In this review, we propose a universal operational definition of the term 'function' that works from a cellular to a global level. Specifically, it is the movement or storage of energy or material. Within this broad definitional framework, all functions are part of a continuum that is tied together by the process-based unifier of material fluxes. With this universal definition at hand, we then present a path forward that will allow us to fully harness the power of functional approaches in understanding and managing high-diversity systems such as coral reefs. A plain language summary is available for this article.

Journal ArticleDOI
TL;DR: The seagrass conservation community is urged to engage stakeholders from local resource users to international policy-makers to address the challenges outlined here, in order to secure the future of the world’s seagRass ecosystems and maintain the vital services which they supply.
Abstract: Seagrasses, flowering marine plants that form underwater meadows, play a significant global role in supporting food security, mitigating climate change and supporting biodiversity. Although progress is being made to conserve seagrass meadows in select areas, most meadows remain under significant pressure resulting in a decline in meadow condition and loss of function. Effective management strategies need to be implemented to reverse seagrass loss and enhance their fundamental role in coastal ocean habitats. Here we propose that seagrass meadows globally face a series of significant common challenges that must be addressed from a multifaceted and interdisciplinary perspective in order to achieve global conservation of seagrass meadows. The six main global challenges to seagrass conservation are (1) a lack of awareness of what seagrasses are and a limited societal recognition of the importance of seagrasses in coastal systems; (2) the status of many seagrass meadows are unknown, and up-to-date information on status and condition is essential; (3) understanding threatening activities at local scales is required to target management actions accordingly; (4) expanding our understanding of interactions between the socio-economic and ecological elements of seagrass systems is essential to balance the needs of people and the planet; (5) seagrass research should be expanded to generate scientific inquiries that support conservation actions; (6) increased understanding of the linkages between seagrass and climate change is required to adapt conservation accordingly. We also explicitly outline a series of proposed policy actions that will enable the scientific and conservation community to rise to these challenges. We urge the seagrass conservation community to engage stakeholders from local resource users to international policy-makers to address the challenges outlined here, in order to secure the future of the world’s seagrass ecosystems and maintain the vital services which they supply.

Journal ArticleDOI
TL;DR: The likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats is assessed.
Abstract: Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FT‐IR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats.

Journal ArticleDOI
TL;DR: Proportions and rarefying produced more accurate comparisons among communities and were the only methods that fully normalized read depths across samples, and normalizing via proportions may be superior to other commonly used methods for comparing ecological communities.
Abstract: 1. Microbiome sequencing data often need to be normalized due to differences in read depths, and recommendations for microbiome analyses generally warn against using proportions or rarefying to normalize data and instead advocate alternatives, such as upper quartile, CSS, edgeR-TMM, or DESeq-VS. Those recommendations are, however, based on studies that focused on differential abundance testing and variance standardization, rather than community-level comparisons (i.e., beta diversity). Also, standardizing the within-sample variance across samples may suppress differences in species evenness, potentially distorting community-level patterns. Furthermore, the recommended methods use log transformations, which we expect to exaggerate the importance of differences among rare OTUs, while suppressing the importance of differences among common OTUs. 2. We tested these theoretical predictions via simulations and a real-world dataset. 3. Proportions and rarefying produced more accurate comparisons among communities and were the only methods that fully normalized read depths across samples. Additionally, upper quartile, CSS, edgeR-TMM, and DESeq-VS often masked differences among communities when common OTUs differed, and they produced false positives when rare OTUs differed. 4. Based on our simulations, normalizing via proportions may be superior to other commonly used methods for comparing ecological communities.

Journal ArticleDOI
TL;DR: The DeepWeeds dataset as mentioned in this paper consists of 17,509 labelled images of eight nationally significant weed species native to eight locations across northern Australia and achieved an average classification accuracy of 95.1% and 95.7%, respectively.
Abstract: Robotic weed control has seen increased research of late with its potential for boosting productivity in agriculture. Majority of works focus on developing robotics for croplands, ignoring the weed management problems facing rangeland stock farmers. Perhaps the greatest obstacle to widespread uptake of robotic weed control is the robust classification of weed species in their natural environment. The unparalleled successes of deep learning make it an ideal candidate for recognising various weed species in the complex rangeland environment. This work contributes the first large, public, multiclass image dataset of weed species from the Australian rangelands; allowing for the development of robust classification methods to make robotic weed control viable. The DeepWeeds dataset consists of 17,509 labelled images of eight nationally significant weed species native to eight locations across northern Australia. This paper presents a baseline for classification performance on the dataset using the benchmark deep learning models, Inception-v3 and ResNet-50. These models achieved an average classification accuracy of 95.1% and 95.7%, respectively. We also demonstrate real time performance of the ResNet-50 architecture, with an average inference time of 53.4 ms per image. These strong results bode well for future field implementation of robotic weed control methods in the Australian rangelands.

Journal ArticleDOI
TL;DR: In this paper, the authors draw together diverse social science perspectives and research into a variety of cases to show how different types of power shape rule setting, issue construction, and policy implementation in polycentric governance.
Abstract: Failure to address unsustainable global change is often attributed to failures in conventional environmental governance. Polycentric environmental governance—the popular alternative—involves many centres of authority interacting coherently for a common governance goal. Yet, longitudinal analysis reveals many polycentric systems are struggling to cope with the growing impacts, pace, and scope of social and environmental change. Analytic shortcomings are also beginning to appear, particularly in the treatment of power. Here we draw together diverse social science perspectives and research into a variety of cases to show how different types of power shape rule setting, issue construction, and policy implementation in polycentric governance. We delineate an important and emerging research agenda for polycentric environmental governance, integrating diverse types of power into analytical and practical models.

Journal ArticleDOI
26 Sep 2019
TL;DR: Deployment of the wMel strain of Wolbachia into local Ae.
Abstract: Background: The w Mel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown in laboratory studies to reduce transmission of a range of viruses including dengue, Zika, chikungunya, yellow fever, and Mayaro viruses that cause human disease. Here we report the entomological and epidemiological outcomes of staged deployment of Wolbachia across nearly all significant dengue transmission risk areas in Australia. Methods: The w Mel strain of Wolbachia was backcrossed into the local Aedes aegypti genotype (Cairns and Townsville backgrounds) and mosquitoes were released in the field by staff or via community assisted methods. Mosquito monitoring was undertaken and mosquitoes were screened for the presence of Wolbachia . Dengue case notifications were used to track dengue incidence in each location before and after releases. Results: Empirical analyses of the Wolbachia mosquito releases, including data on the density, frequency and duration of Wolbachia mosquito releases, indicate that Wolbachia can be readily established in local mosquito populations, using a variety of deployment options and over short release durations (mean release period 11 weeks, range 2-22 weeks). Importantly, Wolbachia frequencies have remained stable in mosquito populations since releases for up to 8 years. Analysis of dengue case notifications data demonstrates near-elimination of local dengue transmission for the past five years in locations where Wolbachia has been established. The regression model estimate of Wolbachia intervention effect from interrupted time series analyses of case notifications data prior to and after releases, indicated a 96% reduction in dengue incidence in Wolbachia treated populations (95% confidence interval: 84 – 99%). Conclusion: Deployment of the w Mel strain of Wolbachia into local Ae. aegypti populations across the Australian regional cities of Cairns and most smaller regional communities with a past history of dengue has resulted in the reduction of local dengue transmission across all deployment areas.

Journal ArticleDOI
TL;DR: It is demonstrated how bleaching is regulated by the forms and ratios of available nutrients and their impacts on autotrophic carbon metabolism, rather than algal symbiont growth.

Journal ArticleDOI
TL;DR: A summary model to represent photosynthetic temperature responses was developed and showed that it predicted the observed global variation in optimal temperatures with high accuracy, which should enable improved prediction of the function of global ecosystems in a warming climate.
Abstract: The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.

Journal ArticleDOI
TL;DR: The use of animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans.
Abstract: Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management.

Journal ArticleDOI
TL;DR: In this article, the authors present a blueprint for future reef conservation that recognizes the need to better understand the processes that maintain Anthropocene reefs, and the growing imperative to reform conservation efforts to address both specific local issues and larger-scale threats.

Journal ArticleDOI
TL;DR: In this paper, the authors present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise.
Abstract: In coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with stratified in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of workflow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will produce more effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.