scispace - formally typeset
Search or ask a question
Institution

James Cook University

EducationTownsville, Queensland, Australia
About: James Cook University is a education organization based out in Townsville, Queensland, Australia. It is known for research contribution in the topics: Population & Coral reef. The organization has 9101 authors who have published 27750 publications receiving 1032608 citations. The organization is also known as: JCU.
Topics: Population, Coral reef, Reef, Coral, Coral reef fish


Papers
More filters
Journal ArticleDOI
TL;DR: Although mortality in 3 groups of 15 green tree frogs Litoria caerulea exposed to 3 isolates of Batrachochytrium dendrobatidis was 100%, time to death varied with isolate, highlighting the importance of strain and/or passage history in pathogenicity studies and possibly in the epidemiology of chytridiomycosis.
Abstract: Although mortality in 3 groups of 15 green tree frogs Litoria caerulea exposed to 3 isolates of Batrachochytrium dendrobatidis was 100%, time to death varied with isolate, highlighting the importance of strain and/or passage history in pathogenicity studies and possibly in the epidemiology of chytridiomycosis. A standard naming scheme for isolates of B. dendrobatidis is proposed.

214 citations

Journal ArticleDOI
TL;DR: Circulating MDSC-depleting strategies in the therapeutic setting especially in combination with vaccination or T-cell transfer approaches have a negative impact on survival and inversely correlate with the presence of functional antigen–specific T cells in patients with advanced melanoma.
Abstract: Purpose: To analyze the prognostic relevance and relative impact of circulating myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) compared with functional tumor antigen–specific T cells in patients with melanoma with distant metastasis. Experimental Design: The percentage of CD14+CD11b+HLA-DR−/low MDSCs, CD4+CD25+FoxP3+ Tregs, and the presence of NY-ESO-1- or Melan-A–specific T cells was analyzed in 94 patients and validated in an additional cohort of 39 patients by flow cytometry. Univariate survival differences were calculated according to Kaplan–Meier and log-rank tests. Multivariate analyses were performed using Cox regression models. Results: NY-ESO-1–specific T cells, the M-category, and the frequency of MDSCs were associated with survival. The absence of NY-ESO-1–specific T cells and the M-category M1c independently increased the risk of death. In a second Cox model not considering results on antigen-specific T cells, a frequency of >11% MDSCs showed independent impact. Its association with survival was confirmed in the additional patient cohort. Median survival of patients with a lower frequency of MDSCs was 13 months versus 8 months for others ( P < 0.001, combined cohorts). We observed a strong correlation between high levels of MDSCs and the absence of melanoma antigen–specific T cells implying a causal and clinically relevant interaction. No prognostic impact was observed for Tregs. Conclusions: Circulating CD14+CD11b+HLA-DR−/low MDSCs have a negative impact on survival and inversely correlate with the presence of functional antigen–specific T cells in patients with advanced melanoma. Our findings provide a rationale to investigate MDSC-depleting strategies in the therapeutic setting especially in combination with vaccination or T-cell transfer approaches. Clin Cancer Res; 20(6); 1601–9. ©2013 AACR . See related article by Kiessling et al., [p. 1401][1] [1]: /lookup/volpage/20/1401?iss=6

214 citations

Journal ArticleDOI
TL;DR: A significant negative correlation between coral trout biomass and summed prey fish biomass suggested that predation may be an important structuring process in this system and highlights the potential ecosystem implications of the use of no-take marine reserves as conservation and fisheries management tools.
Abstract: What are the effects of no-take marine reserves on trophic relationships of coral reef fish? Previous studies often have lacked detailed dietary information on major predators, and have often been confounded by differences in habitat complexity between reserve and fished sites. This study investigates the effects of marine reserve protection on predator-prey interactions of coral reef fish on the inshore islands of the Great Barrier Reef (GBR). The abundance of species of prey fish of Plectropomus leopardus (Serranidae), a piscivore and the major target of the hook and line fisheries on the GBR, were estimated in protected and fished zones. These prey species were identified from previous detailed studies of the diet of P. leopardus. Fish populations and habitat characteristics were surveyed by underwater visual census. Previous studies had determined that the biomass of P. leopardus was 3–4 times higher in protected than fished zones in the Whitsunday and Palm Islands, central GBR, after 14 years of protection. Eight of the nine prey species had a higher density within fished zones than protected zones, six significantly so. The density of all prey fish was twice that in the fished than the protected zone (p < 0.001). There were no significant differences in availability of different sized refuge holes, structural complexity or live coral cover between zones. Thus, important attributes of habitat complexity did not confound the comparisons between reserve and fished zones. Finally, a significant negative correlation (r = 0.46) between coral trout biomass and summed prey fish biomass suggested that predation may be an important structuring process in this system. The results have implications for the conservation of fishery targets and their prey. The study highlights the potential ecosystem implications of the use of no-take marine reserves as conservation and fisheries management tools.

214 citations

Journal ArticleDOI
Nuno Queiroz1, Nuno Queiroz2, Nicolas E. Humphries1, Ana Rita Couto2  +163 moreInstitutions (61)
22 Aug 2019-Nature
TL;DR: It is concluded that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas), demonstrating an urgent need for conservation and management measures at high-seas hotspots of shark space use.
Abstract: Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.

214 citations

Journal ArticleDOI
TL;DR: It is argued that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability, and supported with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory.
Abstract: The demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so-called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco-evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco-evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach.

214 citations


Authors

Showing all 9184 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Hui-Ming Cheng147880111921
Joseph T. Hupp14173182647
Graeme J. Hankey137844143373
Bryan R. Cullen12137150901
Thomas J. Meyer120107868519
William F. Laurance11847056464
Staffan Kjelleberg11442544414
Mike Clarke1131037164328
Gao Qing Lu10854653914
David J. Williams107206062440
Tim J Peters106103747394
Michael E. Goddard10642467681
Ove Hoegh-Guldberg10642563750
John C. Avise10541353088
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

94% related

University of Western Australia
87.4K papers, 3M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

92% related

Monash University
100.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022170
20211,840
20201,737
20191,671
20181,691