scispace - formally typeset
Search or ask a question
Institution

James Cook University

EducationTownsville, Queensland, Australia
About: James Cook University is a education organization based out in Townsville, Queensland, Australia. It is known for research contribution in the topics: Population & Coral reef. The organization has 9101 authors who have published 27750 publications receiving 1032608 citations. The organization is also known as: JCU.
Topics: Population, Coral reef, Reef, Coral, Coral reef fish


Papers
More filters
Journal ArticleDOI
TL;DR: Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management.
Abstract: Phase-shifts from one persistent assemblage of species to another have become increasingly commonplace on coral reefs and in many other ecosystems due to escalating human impacts. Coral reef science, monitoring and global assessments have focused mainly on producing detailed descriptions of reef decline, and continue to pay insufficient attention to the underlying processes causing degradation. A more productive way forward is to harness new theoretical insights and empirical information on why some reefs degrade and others do not. Learning how to avoid undesirable phase-shifts, and how to reverse them when they occur, requires an urgent reform of scientific approaches, policies, governance structures and coral reef management.

944 citations

Journal ArticleDOI
TL;DR: It is asserted that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems, and practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species are highlighted.
Abstract: Linear infrastructure such as roads, highways, power lines and gas lines are omnipresent features of human activity and are rapidly expanding in the tropics. Tropical species are especially vulnerable to such infrastructure because they include many ecological specialists that avoid even narrow (<30-m wide) clearings and forest edges, as well as other species that are susceptible to road kill, predation or hunting by humans near roads. In addition, roads have a major role in opening up forested tropical regions to destructive colonization and exploitation. Here, we synthesize existing research on the impacts of roads and other linear clearings on tropical rainforests, and assert that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems. We also highlight practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species.

903 citations

Journal ArticleDOI
TL;DR: It is suggested that fish biodiversity is threatened wherever permanent reef degradation occurs and warned that marine reserves will not always be sufficient to ensure their survival.
Abstract: The worldwide decline in coral cover has serious implications for the health of coral reefs. But what is the future of reef fish assemblages? Marine reserves can protect fish from exploitation, but do they protect fish biodiversity in degrading environments? The answer appears to be no, as indicated by our 8-year study in Papua New Guinea. A devastating decline in coral cover caused a parallel decline in fish biodiversity, both in marine reserves and in areas open to fishing. Over 75% of reef fish species declined in abundance, and 50% declined to less than half of their original numbers. The greater the dependence species have on living coral as juvenile recruitment sites, the greater the observed decline in abundance. Several rare coral-specialists became locally extinct. We suggest that fish biodiversity is threatened wherever permanent reef degradation occurs and warn that marine reserves will not always be sufficient to ensure their survival.

898 citations

Journal ArticleDOI
TL;DR: Seagrass bioregions at the scale of ocean basins are identified based on species distributions which are supported by genetic patterns of diversity, and provide a useful framework for interpreting ecological, physiological and genetic results collected in specific locations or from particular species.

894 citations

Journal ArticleDOI
Jingjing Liang1, Thomas W. Crowther2, Nicolas Picard3, Susan K. Wiser4, Mo Zhou1, Giorgio Alberti5, Ernst Detlef Schulze6, A. David McGuire7, Fabio Bozzato, Hans Pretzsch8, Sergio de-Miguel, Alain Paquette9, Bruno Hérault10, Michael Scherer-Lorenzen11, Christopher B. Barrett12, Henry B. Glick2, Geerten M. Hengeveld13, Gert-Jan Nabuurs13, Sebastian Pfautsch14, Helder Viana15, Helder Viana16, Alexander Christian Vibrans, Christian Ammer17, Peter Schall17, David David Verbyla7, N. M. Tchebakova18, Markus Fischer19, James V. Watson1, Han Y. H. Chen20, Xiangdong Lei, Mart-Jan Schelhaas13, Huicui Lu13, Damiano Gianelle, Elena I. Parfenova18, Christian Salas21, Eungul Lee1, Boknam Lee22, Hyun-Seok Kim, Helge Bruelheide23, David A. Coomes24, Daniel Piotto, Terry Sunderland25, Terry Sunderland26, Bernhard Schmid27, Sylvie Gourlet-Fleury, Bonaventure Sonké28, Rebecca Tavani3, Jun Zhu29, Susanne Brandl8, Jordi Vayreda, Fumiaki Kitahara, Eric B. Searle20, Victor J. Neldner30, Michael R. Ngugi30, Christopher Baraloto31, Christopher Baraloto32, Lorenzo Frizzera, Radomir Bałazy33, Jacek Oleksyn34, Jacek Oleksyn35, Tomasz Zawiła-Niedźwiecki36, Olivier Bouriaud37, Filippo Bussotti38, Leena Finér, Bogdan Jaroszewicz39, Tommaso Jucker24, Fernando Valladares40, Fernando Valladares41, Andrzej M. Jagodziński34, Pablo Luis Peri42, Pablo Luis Peri43, Pablo Luis Peri44, Christelle Gonmadje28, William Marthy45, Timothy G. O'Brien45, Emanuel H. Martin46, Andrew R. Marshall47, Francesco Rovero, Robert Bitariho, Pascal A. Niklaus27, Patricia Alvarez-Loayza48, Nurdin Chamuya49, Renato Valencia50, Frédéric Mortier, Verginia Wortel, Nestor L. Engone-Obiang51, Leandro Valle Ferreira52, David E. Odeke, R. Vásquez, Simon L. Lewis53, Simon L. Lewis54, Peter B. Reich35, Peter B. Reich14 
West Virginia University1, Yale University2, Food and Agriculture Organization3, Landcare Research4, University of Udine5, Max Planck Society6, University of Alaska Fairbanks7, Technische Universität München8, Université du Québec à Montréal9, University of the French West Indies and Guiana10, University of Freiburg Faculty of Biology11, Cornell University12, Wageningen University and Research Centre13, University of Sydney14, Polytechnic Institute of Viseu15, University of Trás-os-Montes and Alto Douro16, University of Göttingen17, Russian Academy of Sciences18, Oeschger Centre for Climate Change Research19, Lakehead University20, University of La Frontera21, Seoul National University22, Martin Luther University of Halle-Wittenberg23, University of Cambridge24, James Cook University25, Center for International Forestry Research26, University of Zurich27, University of Yaoundé I28, University of Wisconsin-Madison29, Queensland Government30, Florida International University31, Institut national de la recherche agronomique32, Forest Research Institute33, Polish Academy of Sciences34, University of Minnesota35, Warsaw University of Life Sciences36, Ştefan cel Mare University of Suceava37, University of Florence38, University of Warsaw39, Spanish National Research Council40, King Juan Carlos University41, International Trademark Association42, National Scientific and Technical Research Council43, National University of Austral Patagonia44, Wildlife Conservation Society45, College of African Wildlife Management46, University of York47, Durham University48, Ontario Ministry of Natural Resources49, Pontificia Universidad Católica del Ecuador50, Centre national de la recherche scientifique51, Museu Paraense Emílio Goeldi52, University College London53, University of Leeds54
14 Oct 2016-Science
TL;DR: A consistent positive concave-down effect of biodiversity on forest productivity across the world is revealed, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.
Abstract: The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.

889 citations


Authors

Showing all 9184 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Hui-Ming Cheng147880111921
Joseph T. Hupp14173182647
Graeme J. Hankey137844143373
Bryan R. Cullen12137150901
Thomas J. Meyer120107868519
William F. Laurance11847056464
Staffan Kjelleberg11442544414
Mike Clarke1131037164328
Gao Qing Lu10854653914
David J. Williams107206062440
Tim J Peters106103747394
Michael E. Goddard10642467681
Ove Hoegh-Guldberg10642563750
John C. Avise10541353088
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

94% related

University of Western Australia
87.4K papers, 3M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

92% related

Monash University
100.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022170
20211,840
20201,737
20191,671
20181,691