scispace - formally typeset
Search or ask a question
Institution

James Cook University

EducationTownsville, Queensland, Australia
About: James Cook University is a education organization based out in Townsville, Queensland, Australia. It is known for research contribution in the topics: Population & Coral reef. The organization has 9101 authors who have published 27750 publications receiving 1032608 citations. The organization is also known as: JCU.
Topics: Population, Coral reef, Reef, Coral, Coral reef fish


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of wetland structures, classic and novel nitrogen and organics removal mechanisms along with the key environmental parameters and operational conditions that enhance removal in subsurface flow wetland systems shows the necessity of a profound knowledge on the complicated inter-relationship between nitrogen and Organics removal routes, governing environmental and operational parameters, and wetland matrix for improving the treatment performances of subsurfaced flow wetlands.

747 citations

Journal ArticleDOI
TL;DR: If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.
Abstract: The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control sea- water (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae be- came strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidifi- cation continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity

736 citations

Journal ArticleDOI
TL;DR: A standard model for application in future IoT healthcare systems is proposed, and the state-of-the-art research relating to each area of the model is presented, evaluating their strengths, weaknesses, and overall suitability for a wearable IoT healthcare system.
Abstract: Internet of Things (IoT) technology has attracted much attention in recent years for its potential to alleviate the strain on healthcare systems caused by an aging population and a rise in chronic illness. Standardization is a key issue limiting progress in this area, and thus this paper proposes a standard model for application in future IoT healthcare systems. This survey paper then presents the state-of-the-art research relating to each area of the model, evaluating their strengths, weaknesses, and overall suitability for a wearable IoT healthcare system. Challenges that healthcare IoT faces including security, privacy, wearability, and low-power operation are presented, and recommendations are made for future research directions.

735 citations

Journal ArticleDOI
TL;DR: It is shown that the nanoprotrusions on the surfaces of both black silicon and D. bipunctata wings form hierarchical structures through the formation of clusters of adjacent nanoproTrusions, which generate a mechanical bactericidal effect, independent of chemical composition.
Abstract: Black silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata Here we show that the nanoprotrusions on the surfaces of both black silicon and D bipunctata wings form hierarchical structures through the formation of clusters of adjacent nanoprotrusions These structures generate a mechanical bactericidal effect, independent of chemical composition Both surfaces are highly bactericidal against all tested Gram-negative and Gram-positive bacteria, and endospores, and exhibit estimated average killing rates of up to ∼450,000 cells min -1 cm -2 This represents the first reported physical bactericidal activity of black silicon or indeed for any hydrophilic surface This biomimetic analogue represents an excellent prospect for the development of a new generation of mechano-responsive, antibacterial nanomaterials

732 citations


Authors

Showing all 9184 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Hui-Ming Cheng147880111921
Joseph T. Hupp14173182647
Graeme J. Hankey137844143373
Bryan R. Cullen12137150901
Thomas J. Meyer120107868519
William F. Laurance11847056464
Staffan Kjelleberg11442544414
Mike Clarke1131037164328
Gao Qing Lu10854653914
David J. Williams107206062440
Tim J Peters106103747394
Michael E. Goddard10642467681
Ove Hoegh-Guldberg10642563750
John C. Avise10541353088
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

94% related

University of Western Australia
87.4K papers, 3M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

92% related

Monash University
100.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022170
20211,840
20201,737
20191,671
20181,691