scispace - formally typeset
Search or ask a question
Institution

James Cook University

EducationTownsville, Queensland, Australia
About: James Cook University is a education organization based out in Townsville, Queensland, Australia. It is known for research contribution in the topics: Population & Coral reef. The organization has 9101 authors who have published 27750 publications receiving 1032608 citations. The organization is also known as: JCU.
Topics: Population, Coral reef, Reef, Coral, Coral reef fish


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain via mechanisms currently attributed to low‐grade systemic inflammation, elevated lipids and/or insulin resistance.
Abstract: Summary Recent research suggests that increased adiposity is associated with poor cognitive performance, independently of associated medical conditions. The evidence regarding this relationship is examined in this review article. A relatively consistent finding across the lifespan is that obesity is associated with cognitive deficits, especially in executive function, in children, adolescents and adults. However, as illustrated by contradictory studies, the relationship between obesity and cognition is uncertain in the elderly, partly because of inaccuracy of body mass index as a measure of adiposity as body composition changes with aging. This review further discusses whether obesity is a cause or a consequence of these cognitive deficits, acknowledging the possible bidirectional relationship. The possible effects of increased adiposity on the brain are summarized. Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain via mechanisms currently attributed to low-grade systemic inflammation, elevated lipids and/or insulin resistance. The possible role of cognitive remediation treatment strategies to prevent and/or treat obesity is discussed.

558 citations

Journal ArticleDOI
TL;DR: It is proposed that flavor perception depends upon neural processes occurring in chemosensory regions of the brain, including the anterior insula, frontal operculum, orbitofrontal cortex and anterior cingulate cortex, as well as upon the interaction of this chemosENSory “flavor network” with other heteromodal regions including the posterior parietal cortex and possibly the ventral lateral prefrontal cortex.
Abstract: Perceptions of the flavors of foods or beverages reflect information derived from multiple sensory afferents, including gustatory, olfactory, and somatosensory fibers. Although flavor perception therefore arises from the central integration of multiple sensory inputs, it is possible to distinguish the different modalities contributing to flavor, especially when attention is drawn to particular sensory characteristics. Nevertheless, our experiences of the flavor of a food or beverage are also simultaneously of an overall unitary perception. Research aimed at understanding the mechanisms behind this integrated flavor perception is, for the most part, relatively recent. However, psychophysical, neuroimaging and neurophysiological studies on cross-modal sensory interactions involved in flavor perception have started to provide an understanding of the integrated activity of sensory systems that generate such unitary perceptions, and hence the mechanisms by which these signals are "functionally united when anatomically separated". Here we review this recent research on odor/taste integration, and propose a model of flavor processing that depends on prior experience with the particular combination of sensory inputs, temporal and spatial concurrence, and attentional allocation. We propose that flavor perception depends upon neural processes occurring in chemosensory regions of the brain, including the anterior insula, frontal operculum, orbitofrontal cortex and anterior cingulate cortex, as well as upon the interaction of this chemosensory "flavor network" with other heteromodal regions including the posterior parietal cortex and possibly the ventral lateral prefrontal cortex.

557 citations

Book ChapterDOI
TL;DR: Urgent action on the fundamental causes of climate change and appropriate management of critical elements of habitat structure (coral cover and topographic complexity) are key to ensuring long-term persistence of coral-reef fishes.
Abstract: Global climate change is having devastating effects on habitat structure in coral-reef ecosystems owing to extreme environmental sensitivities and consequent bleaching of reef-building scleractinian corals. Coral bleaching frequently causes immediate loss of live coral and may lead to longer-term declines in topographic complexity. This review identifies coral cover and topographic complexity as critical and distinct components of coral-reef habitats that shape communities of coral-reef fishes. Coral loss has the greatest and most immediate effect on fishes that depend on live corals for food or shelter, and many such fishes may face considerable risk of extinction with increasing frequency and severity of bleaching. Coral loss may also have longer-term consequences for fishes that require live corals at settlement, which are compounded by devastating effects of declining topographic complexity. Topographic complexity moderates major biotic factors, such as predation and competition, contributing to the high diversity of fishes on coral reefs. Many coral-reef fishes that do not depend on live coral are nonetheless dependent on the topographic complexity provided by healthy coral growth. Ecological and economic consequences of declining topographic complexity are likely to be substantial compared with selective effects of coral loss but both coral cover and topographic complexity must be recognised as a critical component of habitat structure and managed accordingly. Urgent action on the fundamental causes of climate change and appropriate management of critical elements of habitat structure (coral cover and topographic complexity) are key to ensuring long-term persistence of coral-reef fishes.

555 citations

Journal ArticleDOI
04 Jun 2004-Science
TL;DR: It is shown that initial uptake of zooxanthellae by juvenile corals during natural infection is nonspecific, the association is flexible and characterized by a change in (dominant) Zooxanthella strains over time; and growth rates of experimentally infected coral holobionts are partly contingent on the zooxanhellae strain harbored.
Abstract: The relation between corals and their algal endosymbionts has been a key to the success of scleractinian (stony) corals as modern reef-builders, but little is known about early stages in the establishment of the symbiosis. Here, we show that initial uptake of zooxanthellae by juvenile corals during natural infection is nonspecific (a potentially adaptive trait); the association is flexible and characterized by a change in (dominant) zooxanthella strains over time; and growth rates of experimentally infected coral holobionts are partly contingent on the zooxanthella strain harbored, with clade C-infected juveniles growing two to three times as fast as those infected with clade D.

549 citations

Journal ArticleDOI
25 May 2001-Science
TL;DR: Tropical reef fishes and corals exhibit highly predictable patterns of taxonomic composition across the Indian and Pacific Oceans, but the composition of these key taxa is constrained within a remarkably narrow range of values.
Abstract: Tropical reef fishes and corals exhibit highly predictable patterns of taxonomic composition across the Indian and Pacific Oceans. Despite steep longitudinal and latitudinal gradients in total species richness, the composition of these key taxa is constrained within a remarkably narrow range of values. Regional-scale variation in reef biodiversity is best explained by large-scale patterns in the availability of shallow-water habitat. Once habitat area is accounted for, there is surprisingly little residual effect of latitude or longitude. Low-diversity regions are most vulnerable to human impacts such as global warming, underscoring the urgent need for integrated management at multinational scales.

547 citations


Authors

Showing all 9184 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Hui-Ming Cheng147880111921
Joseph T. Hupp14173182647
Graeme J. Hankey137844143373
Bryan R. Cullen12137150901
Thomas J. Meyer120107868519
William F. Laurance11847056464
Staffan Kjelleberg11442544414
Mike Clarke1131037164328
Gao Qing Lu10854653914
David J. Williams107206062440
Tim J Peters106103747394
Michael E. Goddard10642467681
Ove Hoegh-Guldberg10642563750
John C. Avise10541353088
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

94% related

University of Western Australia
87.4K papers, 3M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

92% related

Monash University
100.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022170
20211,840
20201,737
20191,671
20181,691