scispace - formally typeset
Search or ask a question
Institution

James Cook University

EducationTownsville, Queensland, Australia
About: James Cook University is a education organization based out in Townsville, Queensland, Australia. It is known for research contribution in the topics: Population & Coral reef. The organization has 9101 authors who have published 27750 publications receiving 1032608 citations. The organization is also known as: JCU.
Topics: Population, Coral reef, Reef, Coral, Coral reef fish


Papers
More filters
Journal ArticleDOI
01 Aug 2000-Ecology
TL;DR: The demographic processes underlying a slow decline of corals on Jamaican reefs are examined, finding that rates of survival, population growth, and recruitment declined substantially over time for all species and the stable size structures became increasingly dominated by small colonies.
Abstract: Population decline, local extinction, and recovery are profoundly influenced by variation in demography and life-history traits. In open populations, changes in patterns of recruitment may also have a major influence on the size of local populations, particularly for short-lived organisms. We examine here the demographic processes underlying a slow decline of corals on Jamaican reefs, where coral cover has decreased by fourfold over a 16-yr period. We divided the study into three approximately equal intervals (1977–1982, 1982–1987, and 1987–1993) and constructed size-based transition matrices for each of three abundant species of corals (Montastrea annularis, Agaricia agaricites, and Leptoseris cucullata) that differ substantially in life history: Montastrea is slower-growing, longer-lived, and has lower rates of recruitment than the other two species. Rates of survival, population growth (λ), and recruitment declined substantially over time for all species and the stable size structures became increasingly dominated by small colonies. Elasticity and life table response analysis showed that changes in the persistence of large colonies had the biggest impact on population growth in all species. Simulations indicated that the levels of larval recruitment required to maintain populations at 1977 levels increased sharply over time, even as the actual recruitment rate declined. Recruitment failure was much more important to A. agaricites and L. cucullata than to M. annularis, which could survive long periods with minimal larval input. Recovery of these populations will require an increase in both survival and recruitment. The likelihood of the latter will depend on the scale of larval dispersal, and on the impact of large-scale mortality of adults on stock-recruitment relationships. Differences in connectivity and life histories of corals will determine future patterns of recovery or further decline.

540 citations

Journal ArticleDOI
TL;DR: The process of prioritising actions to conserve valuable assets in conservation efforts and emergency medicine is known as triage, which has been misinterpreted as the process of simply deciding which assets will not receive investment.
Abstract: Conservation efforts and emergency medicine face comparable problems: how to use scarce resources wisely to conserve valuable assets. In both fields, the process of prioritising actions is known as triage. Although often used implicitly by conservation managers, scientists and policymakers, triage has been misinterpreted as the process of simply deciding which assets (e.g. species, habitats) will not receive investment. As a consequence, triage is sometimes associated with a defeatist conservation ethic. However, triage is no more than the efficient allocation of conservation resources and we risk wasting scarce resources if we do not follow its basic principles.

540 citations

Journal ArticleDOI
TL;DR: A recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations are highlighted.
Abstract: The extent of larval dispersal on coral reefs has important implications for the persistence of coral reef metapopulations, their resilience and recovery from an increasing array of threats, and the success of protective measures. This article highlights a recent dramatic increase in research effort and a growing diversity of approaches to the study of larval retention within (self-recruitment) and dispersal among (connectivity) isolated coral reef populations. Historically, researchers were motivated by alternative hypotheses concerning the processes limiting populations and structuring coral reef assemblages, whereas the recent impetus has come largely from the need to incorporate dispersal information into the design of no-take marine protected area (MPA) networks. Although the majority of studies continue to rely on population genetic approaches to make inferences about dispersal, a wide range of techniques are now being employed, from small-scale larval tagging and paternity analyses, to large-scale biophysical circulation models. Multiple approaches are increasingly being applied to cross-validate and provide more realistic estimates of larval dispersal. The vast majority of empirical studies have focused on corals and fishes, where evidence for both extremely local scale patterns of self-recruitment and ecologically significant connectivity among reefs at scales of tens of kilometers (and in some cases hundreds of kilometers) is accumulating. Levels of larval retention and the spatial extent of connectivity in both corals and fishes appear to be largely independent of larval duration or reef size, but may be strongly influenced by geographic setting. It is argued that high levels of both self-recruitment and larval import can contribute to the resilience of reef populations and MPA networks, but these benefits will erode in degrading reef environments.

537 citations

Journal ArticleDOI
TL;DR: In this article, the Southern Hemisphere curve (SHCal20) is proposed to estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older than the Northern Hemisphere offset, based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data.
Abstract: Early researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.

535 citations

Journal ArticleDOI
TL;DR: It is shown that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources.
Abstract: A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

535 citations


Authors

Showing all 9184 results

NameH-indexPapersCitations
Christopher J L Murray209754310329
Hui-Ming Cheng147880111921
Joseph T. Hupp14173182647
Graeme J. Hankey137844143373
Bryan R. Cullen12137150901
Thomas J. Meyer120107868519
William F. Laurance11847056464
Staffan Kjelleberg11442544414
Mike Clarke1131037164328
Gao Qing Lu10854653914
David J. Williams107206062440
Tim J Peters106103747394
Michael E. Goddard10642467681
Ove Hoegh-Guldberg10642563750
John C. Avise10541353088
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

94% related

University of Western Australia
87.4K papers, 3M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

92% related

Monash University
100.6K papers, 3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202334
2022170
20211,840
20201,737
20191,671
20181,691