scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Politics. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a conceptual framework of public understandings of E-waste and its disposal in urban India is proposed, based on the theory of planned behaviour and conspicuous consumption.

80 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that metaigneous gneisses that occur as slivers on the western margin of the schist belt have an isotopic character similar to that of the metaplutonic rocks on the same side of the Kolar Schist Belt.
Abstract: Conspicuous Nd, Sr and Pb isotopic differences exist between the Archean gneiss terranes adjoining the suture at the Kolar Schist Belt, south India. These gneisses, which are the deformed equivalents of plutonic and volcanic rocks, have known or inferred igneous ages of 2630 to 2530 Ma. Initial isotopic ratios of Nd, Sr and Pb suggest that metaplutonic gneisses west of the Kolar Schist Belt were emplaced into, and variably contaminated by, an evolved continental crust that formed prior to 3200 Ma. Felsic metaigneous gneisses that occur as slivers on the western margin of the schist belt have an isotopic character similar to that of the metaplutonic rocks on the same side of the Kolar Schist Belt. On the east side of the Kolar Schist Belt the isotopic evidence suggests that the 2530 Ma granitic gneisses were not derived from or contaminated by an older continental crust. Their source probably evolved with a Nd isotopic composition similar to that of typical Archean mantle, but became light rare earth element enriched after 2900 to 2700 Ma. The inferred tectonic setting for the west side of the Kolar Schist Belt is an Andean continental magmatic arc. For the east side of the Kolar Schist Belt, a possible Phanerozoic analog is an evolved island arc, such as Japan.

80 citations

Journal ArticleDOI
TL;DR: Genomic and proteomic approaches provided validation to this strain’s robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.
Abstract: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysaccharide-based biorefinery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to find the important enzymes for polymer utilization. Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin degradation and PHA production. We also applied label-free quantitative proteomic approach to identify the expression profile on monoaromatic compound vanillic acid (VA) and polyaromatic kraft lignin (KL). Genomic and proteomic analysis simultaneously discovered Dyp-type peroxidase, peroxidases, glycolate oxidase, aldehyde oxidase, GMC oxidoreductase, laccases, quinone oxidoreductase, dioxygenases, monooxygenases, glutathione-dependent etherases, dehydrogenases, reductases, and methyltransferases and various other recently reported enzyme systems such as superoxide dismutases or catalase–peroxidase for lignin degradation. A strong stress response and detoxification mechanism was discovered. The two important gene clusters for lignin degradation and three PHA polymerase spanning gene clusters were identified and all the clusters were functionally active on KL–VA. The unusual aerobic ‘-CoA’-mediated degradation pathway of phenylacetate and benzoate (reported only in 16 and 4–5% of total sequenced bacterial genomes), peroxidase-accessory enzyme system, and fenton chemistry based are the major pathways observed for lignin degradation. Both ortho and meta ring cleavage pathways for aromatic compound degradation were observed in expression profile. Genomic and proteomic approaches provided validation to this strain’s robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.

80 citations

Journal ArticleDOI
15 Mar 2018-Blood
TL;DR: In this paper, the authors used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells.

80 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012