scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Candida albicans. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
01 May 2005-Burns
TL;DR: The study of the effect of various bacterial species, collected from burn wounds on the growth of Candida sp.

77 citations

Journal ArticleDOI
TL;DR: It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues, suggesting the potentiating effect of mir- 24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs.
Abstract: New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests that miR-24-2 is more effective in controlling H2AX gene expression, regardless of the change in gene copy number. Further, the study indicates that combination therapy with miR-24-2 along with an anticancer drug such as cisplatin could provide a new avenue in cancer therapy for patients with tumors otherwise resistant to drugs.

77 citations

Journal ArticleDOI
TL;DR: An enthralling and exceptionally close race to garner the top position within the electron deficient molecules unfolds, which has immense implications with regard to stability and potential applications.
Abstract: Arylenediimides are inherently electron deficient and provide enormous opportunities to conjugate electron withdrawing substituents in different regions of the π-scaffold. This review article highlights the gradual emergence of diverse molecular design principles to realize exceptionally electron deficient arylenediimide molecules. Interestingly, non-conventional electron withdrawing substituents allow the realization of some of the strongest electron acceptors known from this class of molecules. Thus, an enthralling and exceptionally close race to garner the top position within the electron deficient molecules unfolds, which has immense implications with regard to stability and potential applications.

77 citations

Journal ArticleDOI
TL;DR: Evl was not more effective than the β-blocker propranolol for the secondary prophylaxis of variceal bleeding in patients with NCPH and rates of recurrence of bleeding were similar between the groups.

77 citations

Journal ArticleDOI
TL;DR: Rhamnolipids (RLs) are surface-active compounds and belong to the class of glycolipid biosurfactants, mainly produced from Pseudomonas aeruginosa as discussed by the authors.
Abstract: Rhamnolipids (RLs) are surface-active compounds and belong to the class of glycolipid biosurfactants, mainly produced from Pseudomonas aeruginosa. Due to their non-toxicity, high biodegradability, low surface tension and minimum inhibitory concentration values, they have gained attention in various sectors like food, healthcare, pharmaceutical and petrochemicals. The ecofriendly biological properties of rhamnolipids make them potent materials to be used in therapeutic applications. RLs are also known to induce apoptosis and thus, able to inhibit proliferation of cancer cells. RLs can also act as immunomodulators to regulate the humoral and cellular immune systems. Regarding their antimicrobial property, they lower the surface hydrophobicity, destruct the cytoplasmic membrane and lower the critical micelle concentration to kill the bacterial cells either alone or in combination with nisin possibly due to their role in modulating outer membrane protein. RLs are also involved in the synthesis of nanoparticles for in vivo drug delivery. In relation to economic benefits, the post-harvest decay of food can be decreased by RLs because they prevent the mycelium growth, spore germination of fungi and inhibit the emergence of biofilm formation on food. The present review focuses on the potential uses of RLs in cosmetic, pharmaceutical, food and health-care industries as the potent therapeutic agents.

77 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012