scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Politics. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
17 Oct 2012-PLOS ONE
TL;DR: The data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory and changes in sleep architecture after CuFC.
Abstract: Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC) is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n=51). In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM) (n=9) and lights-off (7 PM) (n=9) periods. In experiment-II, animals were prepared for polysomnographic recording (n=8) and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD) (n=9), Non-Sleep Deprived (NSD) (n=9), Stress Control (SC) (n=9) and Tone Control (n=7). Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a mosaic-type parameterization of subgrid-scale topography and land use (sub-BATS) was used for regional climate simulation with a regional climate model (RegCM3).
Abstract: The western Himalayas (WH) is characterized by heterogeneous land surface characteristics and topography. During winter (December, January, and February—DJF), eastward moving low-pressure synoptic weather systems, called Western Disturbances (WDs) in Indian parlance, cause the majority of the precipitation mostly in the form of snow. The interplay between land surface/topography and WDs greatly controls precipitation distribution over the region. This study seeks to evaluate this using a mosaic-type parameterization of subgrid-scale topography and land use (sub-BATS) for regional climate simulation with a regional climate model (RegCM3). The model coarse grid cell size in the control simulation is 60 km while the subgrid cell size is 10 km. This study compares two 22 year simulations (1980–2001) during winter (DJF). The first simulation is without (CONT) and the second is with (SUB) the fine scale subgrid scheme. Representing the fine scale processes using the subgrid scheme SUB experiment simulates reduced precipitation by approximately 2 mm d−1 with comparison to CONT experiment. This estimation of reduced and closer to the corresponding observed precipitation is important for regional water budget over the WH which is primarily governed by topographic and land surface disaggregation. Validation with corresponding observations over similar elevations shows that SUB displays an improvement over CONT experiment. This relevant decrease of precipitation in SUB using disaggregation-reaggregation methodology for initial model input fields in subBATS scheme is due to better representation of the WH topography. In case of temperature, SUB experiment displays colder bias (∼2–4 °C) than the CONT over the Himalayas. This preliminary finding is important for studying regional water balance, snow melt accumulation in following summer period.

76 citations

Journal ArticleDOI
TL;DR: Both the experimental and theoretical investigation show that the exchange interaction between Cu2+-Cu2+ ions mediated by VZn is responsible for RTFM in Cu-doped ZnO.
Abstract: It is widely reported during last decade on the observation of room temperature ferromagnetism (RTFM) in doped ZnO and other transition metal oxides. However, the origin of RTFM is not understood and highly debated. While investigating the origin of RTFM, magnetic ion doped oxides should be excluded because it is not yet settled whether RTFM is intrinsic or due to the magnetic ion cluster in ZnO. Hence, it is desirable to investigate the origin of RTFM in non-magnetic ion doped ZnO and Cu-doped ZnO will be most suitable for this purpose. The important features of ferromagnetism observed in doped ZnO are (i) observation of RTFM at a doping concentration much below than the percolation threshold of wurtzite ZnO, (ii) temperature independence of magnetization and (iii) almost anhysteretic magnetization curve. We show that all these features of ferromagnetism in ZnO are due to overlapping of bound magnetic polarons (BMPs) which are created by exchange interaction between the spin of Cu2+ ion and spin of the localized hole due to zinc vacancy [Formula: see text]. Both the experimental and theoretical investigation show that the exchange interaction between Cu2+-Cu2+ ions mediated by [Formula: see text] is responsible for RTFM in Cu-doped ZnO.

76 citations

Journal ArticleDOI
TL;DR: A highly complex interplay between the baseline pollution and meteorology leading to counter intuitive enhancements in pollution, besides an overall improvement in air quality during the COVID-19 lockdown in this part of the world is highlighted.
Abstract: Delhi, a tropical Indian megacity, experiences one of the most severe air pollution in the world, linked with diverse anthropogenic and biomass burning emissions. First phase of COVID-19 lockdown in India, implemented during 25 March to 14 April 2020 resulted in a dramatic near-zeroing of various activities (e.g. traffic, industries, constructions), except the “essential services”. Here, we analysed variations in the fine particulate matter (PM2.5) over the Delhi-National Capital Region. Measurements revealed large reductions (by 40–70%) in PM2.5 during the first week of lockdown (25–31 March 2020) as compared to the pre-lockdown conditions. However, O3 pollution remained high during the lockdown due to non-linear chemistry and dynamics under low aerosol loading. Notably, events of enhanced PM2.5 levels (300–400 µg m−3) were observed during night and early morning hours in the first week of April after air temperatures fell close to the dew-point (~ 15–17 °C). A haze formation mechanism is suggested through uplifting of fine particles, which is reinforced by condensation of moisture following the sunrise. The study highlights a highly complex interplay between the baseline pollution and meteorology leading to counter intuitive enhancements in pollution, besides an overall improvement in air quality during the COVID-19 lockdown in this part of the world.

76 citations

Journal ArticleDOI
TL;DR: The third largest river of India, the Godavari River, has been sampled for Particulate Inorganic and OrganicCarbon (PIC, POC), Particulated Nitrogen (PN), andParticulate Amino Acids (PAA, including 2 hexosamines(HA)) during the dry season POM in the upper reaches is relatively freshand autochthonous, in the lower reaches it is degradedand inorganic suspended matter content is higher as mentioned in this paper.
Abstract: The Godavari River, the third largest river of India,has been sampled for Particulate Inorganic and OrganicCarbon (PIC, POC), Particulate Nitrogen (PN), andParticulate Amino Acids (PAA, including 2 hexosamines(HA)). During the dry season Particulate OrganicMatter (POM) in the upper reaches is relatively freshand autochthonous, in the lower reaches it is degradedand inorganic suspended matter content is higher here.In the wet season (wet monsoon) heavy rains cause abasin-wide flushing of humus from entire catchmentarea consequently POM in the river is mainly degradedand allochthonous. Annual transport of the GodavariRiver amounts to 2.81 × 10 6 ton POC, 0.29 × 10 6ton PN and 0.10 × 10 6 tonParticulate Amino Acid Nitrogen. These amounts rank theGodavari River to one of the most important organic carbontransporting rivers in the world.

75 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012