scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Candida albicans. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
30 Dec 2020
TL;DR: In this paper, the authors reviewed model simulations from the IGAC Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative (CCMI) to assess the changes in the tropospheric ozone burden and its budget from 1850-2010.
Abstract: Our understanding of the processes that control the burden and budget of tropospheric ozone have changed dramatically over the last 60 years. Models are the key tools used to understand these changes and these underscore that there are many processes important in controlling the tropospheric ozone budget. In this critical review we assess our evolving understanding of these processes, both physical and chemical. We review model simulations from the IGAC Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative (CCMI) to assess the changes in the tropospheric ozone burden and its budget from 1850-2010. Analysis of these data indicates that there has been significant growth in the ozone burden from 1850-2000 (~ 43±9%), but smaller growth between 1960-2000 (~16±10%) and that the models simulate burdens of ozone well within recent satellite estimates. The CCMI model ozone budgets indicate that the net chemical production of ozone in the troposphere plateaued in the 1990s and has not changed since then inspite of increases in the burden. There has been a shift in net ozone production in the troposphere being greatest in the Northern mid and high latitudes to the Northern tropics; driven by the regional evolution of precursor emissions. An analysis of the evolution of tropospheric ozone through the 21st century, as simulated by CMIP5 models, reveals a large source of uncertainty associated with models themselves (i.e. in the way that they simulate the chemical and physical processes that control tropospheric ozone). This structural uncertainty is greatest in the near term (two to three decades) but emissions scenarios dominate uncertainty in the longer-term (2050-2100) evolution of tropospheric ozone. This intrinsic model uncertainty prevents robust predictions of near-term changes in the tropospheric ozone burden, and we review how progress can be made to reduce this limitation.

68 citations

Journal ArticleDOI
TL;DR: A Candida albicans mutant with mutations in the N-acetylglucosamine (GlcNAc) catabolic pathway gene cluster was not able to grow on amino sugars, exhibited highly attenuated virulence in a murine systemic candidiasis model, and was less adherent to human buccal epithelial cells in vitro.
Abstract: A Candida albicans mutant with mutations in the N-acetylglucosamine (GlcNAc) catabolic pathway gene cluster, including the GlcNAc-6-phosphate deacetylase (DAC1), glucosamine-6-phosphate deaminase (NAG1), and GlcNAc kinase (HXK1) genes, was not able to grow on amino sugars, exhibited highly attenuated virulence in a murine systemic candidiasis model, and was less adherent to human buccal epithelial cells in vitro. No germ tubes were formed by the mutant after induction with GlcNAc, but the mutant exhibited hyperfilamentation under stress-induced filamentation conditions. In addition, the GlcNAc catabolic pathway played a vital role in determining the colony phenotype. Our results imply that this pathway is very important because of its diverse links with pathways involved in virulence and morphogenesis of the organism.

68 citations

Journal ArticleDOI
TL;DR: Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome and many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions intrans.
Abstract: Mobile genetic elements, by virtue of their ability to move to new chromosomal locations, are considered important in shaping the evolutionary course of the genome. They are widespread in the biological kingdom. Among the protozoan parasites several types of transposable elements are encountered. The largest variety is seen in the trypanosomatids—Trypanosoma brucei, Trypanosoma cruzi andCrithidia fasciculata. They contain elements that insert site-specifically in the spliced-leader RNA genes, and others that are dispersed in a variety of genomic locations.Giardia lamblia contains three families of transposable elements. Two of these are subtelomeric in location while one is chromosomeinternal.Entamoeba histolytica has an abundant retrotransposon dispersed in the genome. Nucleotide sequence analysis of all the elements shows that they are all retrotransposons, and, with the exception of one class of elements inT. cruzi, all of them are non-long-terminal-repeat retrotransposons. Although most copies have accumulated mutations, they can potentially encode reverse transcriptase, endonuclease and nucleic-acid-binding activities. Functionally and phylogenetically they do not belong to a single lineage, showing that retrotransposons were acquired early in the evolution of protozoan parasites. Many of the potentially autonomous elements that encode their own transposition functions have nonautonomous counterparts that probably utilize the functions intrans. In this respect these elements are similar to the mammalian LINEs and SINEs (long and short interspersed DNA elements), showing a common theme in the evolution of retrotransposons. So far there is no report of a DNA transposon in any protozoan parasite. The genome projects that are under way for most of these organisms will help understand the evolution and possible function of these genetic elements.

68 citations

Journal ArticleDOI
TL;DR: Members of group III HK, which occur in the highest number of fungal species and contain a unique N‐terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi.
Abstract: Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs.

68 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012