scispace - formally typeset
Search or ask a question
Institution

Jawaharlal Nehru University

EducationNew Delhi, India
About: Jawaharlal Nehru University is a education organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Candida albicans. The organization has 6082 authors who have published 13455 publications receiving 245407 citations. The organization is also known as: JNU.


Papers
More filters
Journal ArticleDOI
TL;DR: The first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxic response in glioblastoma.
Abstract: Hypoxia is a critical aspect of the glioma microenvironment and has been associated with poor prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to identify those. With this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand, miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A. Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of these were found to be differentially expressed under hypoxia. Overall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma.

117 citations

Journal ArticleDOI
TL;DR: The importance of p53-mediated regulation of glycolysis and OXPHOS and its relation with the tumor suppressor function of p 53 is elucidated and the role of p52 in regulation of aging via its transcriptional control of cellular metabolism is established.
Abstract: Esha Madan 1,2 , Rajan Gogna 2 , Madan Bhatt 3 , Uttam Pati 2 , Periannan Kuppusamy 4 , Abbas Ali Mahdi 1 1 Department of Biochemistry, Chhatrapati Shahuji Maharaj Medical University, Lucknow, India 2 Transcription and Human Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New-Delhi, India 3 Department of Radiotherapy and Chemotherapy, Chhatrapati Shahuji Maharaj Medical University, Lucknow, India 4 Dorothy M Davis Heart and Lung Research institute, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA Received: December 19, 2011; Accepted: December 20, 2011; Published: December 31, 2011; Keywords: p53, Metabolism, TIGAR, SCO2, Tumor Suppressor Correspondence: Abbas Ali Mahdi, email: // // Abstract p53 is well known as the "guardian of the genome" for differentiated and neoplastic cells. p53 induces cell-cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability. In addition to this tumor suppressor function for pro-oncogenic cells, p53 also plays an important role as the central regulator of stress response by maintaining cellular homeostasis at the molecular and biochemical level. p53 regulates aerobic respiration at the glycolytic and oxidative phosphorylation (OXPHOS) steps via transcriptional regulation of its downstream genes TP53-induced glycolysis regulator (TIGAR) and synthesis of cytochrome c oxidase (SCO2). p53 negatively regulates glycolysis through activation of TIGAR (an inhibitor of the fructose-2,6-bisphosphate). On the contrary p53 positively regulates OXPHOS through upregulation of SCO2, a member of the COX-2 assembly involved in the electron-transport chain. It is interesting to notice that p53 antagonistically regulates the inter-dependent glycolytic and OXPHOS cycles. It is important to understand whether the p53-mediated transcriptional regulation of TIGAR and SCO2 is temporally segregated in cancer cells and what is the relation between these paradoxical regulations of glycolytic pathway with the tumor suppressor activity of p53. In this review we will elucidate the importance of p53-mediated regulation of glycolysis and OXPHOS and its relation with the tumor suppressor function of p53. Further since cellular metabolism shares great relation with the process of aging we will also try and establish the role of p53 in regulation of aging via its transcriptional control of cellular metabolism.

116 citations

Journal ArticleDOI
TL;DR: In this article, nanoscale zero-valent iron (Fe0) was stabilized by polyvinyl alcohol (PVA) and fabricated to granules for stability and functional excellence.

116 citations

Journal ArticleDOI
TL;DR: By accumulating cAMP in the immune effector cells, these adenylate cyclase toxins poison the immune system and thus facilitate the survival of the bacteria in the host.
Abstract: Cyclic AMP is a ubiquitous messenger that integrates many processes of the cell. Diverse families of adenylate cyclases and phosphodiesterases stringently regulate the intracellular concentration of cAMP. Any alteration in the cytosolic concentration of cAMP has a profound effect on the various processes of the cell. Disruption of these cellular processes in vivo is often the most critical event in the pathogenesis of infectious diseases for animals and humans. Many pathogenic bacteria secrete toxins to alter the intracellular concentration of cAMP. These toxins either disrupt the normal regulation of the host cell's adenylate cyclases/phosphodiesterases or they themselves catalyze the synthesis of cAMP in the host cell. The latter are known as the adenylate cyclase toxins. Four such toxins have been identified: the invasive adenylate cyclase of Bordetella pertussis, the edema factor of Bacillus anthracis, ExoY of Pseudomonas aeruginosa, and the adenylate cyclase of Yersinia pestis. These adenylate cyclase toxins enter the eukaryotic host cells and get activated by eukaryotic cofactors, like calmodulin, to trigger the synthesis of cAMP in these cells. By accumulating cAMP in the target cells, these toxins either modulate the cellular function or completely deactivate the cell for further function. The immune effector cells appear to be the primary target of these adenylate cyclase toxins. By accumulating cAMP in the immune effector cells, these adenylate cyclase toxins poison the immune system and thus facilitate the survival of the bacteria in the host.

116 citations


Authors

Showing all 6255 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Rajesh Kumar1494439140830
Sanjay Gupta9990235039
Rakesh Kumar91195939017
Praveen Kumar88133935718
Rajendra Prasad8694529526
Mukesh K. Jain8553927485
Shiv Kumar Sarin8474028368
Gaurav Sharma82124431482
Santosh Kumar80119629391
Dinesh Mohan7928335775
Govindjee7642621800
Dipak K. Das7532717708
Amit Verma7049716162
Manoj Kumar6540816838
Network Information
Related Institutions (5)
University of Delhi
36.4K papers, 666.9K citations

93% related

Banaras Hindu University
23.9K papers, 464.6K citations

91% related

International Institute of Minnesota
17.4K papers, 537.4K citations

90% related

Panjab University, Chandigarh
18.7K papers, 461K citations

90% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202385
2022314
20211,314
20201,240
20191,066
20181,012