scispace - formally typeset
Search or ask a question

Showing papers by "Jet Propulsion Laboratory published in 2002"


Journal ArticleDOI
TL;DR: This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion–reducing capabilities.
Abstract: Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities, conferred in part by multicomponent, branched electron transport systems. Here we report the sequencing of the S. oneidensis genome, which consists of a 4,969,803-base pair circular chromosome with 4,758 predicted protein-encoding open reading frames (CDS) and a 161,613-base pair plasmid with 173 CDSs. We identified the first Shewanella lambda-like phage, providing a potential tool for further genome engineering. Genome analysis revealed 39 c-type cytochromes, including 32 previously unidentified in S. oneidensis, and a novel periplasmic [Fe] hydrogenase, which are integral members of the electron transport system. This genome sequence represents a critical step in the elucidation of the pathways for reduction (and bioremediation) of pollutants such as uranium (U) and chromium (Cr), and offers a starting point for defining this organism's complex electron transport systems and metal ion-reducing capabilities.

815 citations


Journal ArticleDOI
TL;DR: In this paper, a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity is described.
Abstract: Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, for example, optical Mach—Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach—Zehnder interferometer, the Ramsey spectroscope and a generic quantum logic circuit. Based on this equivalence we introduce the 'quantum Rosetta stone', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us that the same method should work in atom spectroscopy.

417 citations


Journal ArticleDOI
05 Jul 2002-Science
TL;DR: In this article, the authors found deficits of high-energy neutrons in the southern highlands and northern lowlands of Mars, indicating that hydrogen is concentrated in the subsurface.
Abstract: After 55 days of mapping by the High Energy Neutron Detector onboard Mars Odyssey, we found deficits of high-energy neutrons in the southern highlands and northern lowlands of Mars. These deficits indicate that hydrogen is concentrated in the subsurface. Modeling suggests that water ice-rich layers that are tens of centimeters in thickness provide one possible fit to the data.

362 citations


Journal ArticleDOI
24 May 2002-Science
TL;DR: This system and other binary near-Earth asteroids have spheroidal primaries spinning near the breakup point for strengthless bodies, suggesting that the binaries formed by spin-up and fission, probably as a result of tidal disruption during close planetary encounters, may be binary systems.
Abstract: Radar images of near-Earth asteroid 2000 DP107 show that it is composed of an approximately 800-meter-diameter primary and an approximately 300-meter-diameter secondary revolving around their common center of mass. The orbital period of 1.755 +/- 0.007 days and semimajor axis of 2620 +/- 160 meters constrain the total mass of the system to 4.6 +/- 0.5 x 10(11) kilograms and the bulk density of the primary to 1.7 +/- 1.1 grams per cubic centimeter. This system and other binary near-Earth asteroids have spheroidal primaries spinning near the breakup point for strengthless bodies, suggesting that the binaries formed by spin-up and fission, probably as a result of tidal disruption during close planetary encounters. About 16% of near-Earth asteroids larger than 200 meters in diameter may be binary systems.

329 citations


Journal ArticleDOI
TL;DR: Instrumentation and retrieval algorithms are described which use the forward scattered range-coded signals from the global positioning system (GPS) radio navigation system for the measurement of sea surface roughness.
Abstract: Instrumentation and retrieval algorithms are described which use the forward scattered range-coded signals from the global positioning system (GPS) radio navigation system for the measurement of sea surface roughness. This roughness has long been known to be dependent upon the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track and over experimental surface truth buoys. These flights used a receiver capable of recording the cross-correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models, which employ a geometric optics approach. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

328 citations


Journal ArticleDOI
TL;DR: In this article, the timescales required for reaching isotopic equilibrium have been determined by parallel isotope tracer experiments using 57 Fe-enriched iron, with K = 0.18±0.03 s −1.

318 citations


Journal ArticleDOI
TL;DR: In this paper, the authors report the first measurements of anisotropy in the cosmic microwave background (CMB) radiation with the Arcminute Cosmology Bolometer Array Receiver (ACBAR).
Abstract: We report the first measurements of anisotropy in the cosmic microwave background (CMB) radiation with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). The instrument was installed on the 2.1m Viper telescope at the South Pole in January 2001; the data presented here are the product of observations up to and including July 2002. The two deep fields presented here, have had offsets removed by subtracting lead and trail observations and cover approximately 24 deg^2 of sky selected for low dust contrast. These results represent the highest signal to noise observations of CMB anisotropy to date; in the deepest 150GHz band map, we reached an RMS of 8.0\mu K per 5' beam. The 3 degree extent of the maps, and small beamsize of the experiment allow the measurement of the CMB anisotropy power spectrum over the range \ell = 150-3000 with resolution of \Delta \ell=150. The contributions of galactic dust and radio sources to the observed anisotropy are negligible and are removed in the analysis. The resulting power spectrum is found to be consistent with the primary anisotropy expected in a concordance \Lambda CDM Universe.

316 citations


Journal ArticleDOI
TL;DR: The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hr exposure in two observations.
Abstract: The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hr exposure in two observations. We detect 1075 X-ray sources, most with subarcsecond positional accuracy. Ninety-one percent of the sources are spatially associated with known stellar members of the cluster, and an additional 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main-sequence stellar population and covers the initial mass function from brown dwarfs up to a 45 M☉ O star. Source luminosities span 5 orders of magnitude from log L_X ≃ 28.0 to 33.3 ergs s^(-1) in the 0.5-8 keV band, plasma energies range from 0.2 to >10 keV, and absorption ranges from log N_H < 20.0 to ~23.5 cm^(-2). Comprehensive tables providing X-ray and stellar characteristics are provided electronically. We examine here the X-ray properties of Orion young stars as a function of mass; other studies of astrophysical interest will appear in companion papers. Results include: (a) the discovery of rapid variability in the O9.5 31 M☉ star θ^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small shocks distributed throughout the radiatively accelerated wind; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G through M type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the "saturation" level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T ≥ 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main-sequence very low-mass objects showing flaring levels similar to those seen in more massive T Tauri stars and a decline in magnetic activity as they evolve into L and T type brown dwarfs.

311 citations


Journal ArticleDOI
01 Apr 2002-Icarus
TL;DR: In this article, a simple model of local heat transport on Mars demonstrates that transient melting of ice may occur in depressions and gullies nearly anywhere on the planet where thin ice is illuminated by normal-incidence insolation.

291 citations


Journal ArticleDOI
TL;DR: This article shows that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories of facial expression recognition.
Abstract: There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain.

249 citations


Journal ArticleDOI
TL;DR: In this article, a single-blind round-robin comparison of satellite primary productivity algorithms was conducted to determine the accuracy of the algorithms in predicting depth-integrated primary production from information amenable to remote sensing.
Abstract: [1] Results of a single-blind round-robin comparison of satellite primary productivity algorithms are presented. The goal of the round-robin exercise was to determine the accuracy of the algorithms in predicting depth-integrated primary production from information amenable to remote sensing. Twelve algorithms, developed by 10 teams, were evaluated by comparing their ability to estimate depth-integrated daily production (IP, mg C m−2) at 89 stations in geographically diverse provinces. Algorithms were furnished information about the surface chlorophyll concentration, temperature, photosynthetic available radiation, latitude, longitude, and day of the year. Algorithm results were then compared with IP estimates derived from 14C uptake measurements at the same stations. Estimates from the best-performing algorithms were generally within a factor of 2 of the 14C-derived estimates. Many algorithms had systematic biases that can possibly be eliminated by reparameterizing underlying relationships. The performance of the algorithms and degree of correlation with each other were independent of the algorithms’ complexity.

Journal ArticleDOI
TL;DR: The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure.
Abstract: The Orion Nebula Cluster and the molecular cloud in its vicinity have been observed with the ACIS-I detector on board the Chandra X-ray Observatory with 23 hours exposure. We detect 1075 X-ray sources: 91% are spatially associated with known stellar members of the cluster, and 7% are newly identified deeply embedded cloud members. This provides the largest X-ray study of a pre-main sequence stellar population. We examine here the X-ray properties of Orion young stars as a function of mass. Results include: (a) the discovery of rapid variability in the O9.5 31 M_o star \theta^2A Ori, and several early B stars, inconsistent with the standard model of X-ray production in small wind shocks; (b) support for the hypothesis that intermediate-mass mid-B through A type stars do not themselves produce significant X-ray emission; (c) confirmation that low-mass G- through M-type T Tauri stars exhibit powerful flaring but typically at luminosities considerably below the `saturation' level; (d) confirmation that the presence or absence of a circumstellar disk has no discernable effect on X-ray emission; (e) evidence that T Tauri plasma temperatures are often very high with T >= 100 MK, even when luminosities are modest and flaring is not evident; and (f) detection of the largest sample of pre-main sequence very low mass objects showing high flaring levels and a decline in magnetic activity as they evolve into L- and T-type brown dwarfs.

Proceedings ArticleDOI
17 Mar 2002
TL;DR: A review of the status of the EAP field and the challenges to practical application of EAP materials as actuators is presented in this article, where the basic principles are studied using comprehensive material science, electro-mechanics analytical tools and improved material processing techniques to gain better understanding of the parameters that control the electro-activation force and deformation.
Abstract: In the last ten years, new EAP materials have emerged that exhibit large displacement in response to electrical stimulation enabling great potential for the field. To develop efficient and robust EAP material for practical applications efforts are underway to understand the behavior of EAP materials and improved characterization techniques. Further, to enhance the actuation force the basic principles are being studied using comprehensive material science, electro-mechanics analytical tools and improved material processing techniques to gain better understanding of the parameters that control the EAP electro-activation force and deformation. The processes of synthesizing, fabricating, electroding, shaping and handling are being refined to maximize the EAP materials actuation capability and robustness. Methods of reliably characterizing the response of these materials are required to establish database with documented material properties in order to support design engineers considering use of these materials and towards making EAP as actuators of choice. Various configurations of EAP actuators and sensors need to be studied and modeled to produce an arsenal of effective smart EAP driven system. The development of the infrastructure is a multidisciplinary task involving materials science, chemistry, electro-mechanics, computers, electronics, and others. This paper will be a review of the status of the EAP field and the challenges to practical application of EAP materials as actuators.

Journal ArticleDOI
TL;DR: In this article, the X-ray emission from the shell-like, nonthermal radio source Sgr A East (SNR 000.0+00.0), located in the inner few parsecs of the Galaxy based on observations made with the ACIS detector on board the Chandra X-Ray Observatory, was clearly resolved from other complex structures in the region.
Abstract: We report on the X-ray emission from the shell-like, nonthermal radio source Sgr A East (SNR 000.0+00.0), located in the inner few parsecs of the Galaxy based on observations made with the ACIS detector on board the Chandra X-Ray Observatory. This is the first time Sgr A East has been clearly resolved from other complex structures in the region. The X-ray-emitting region is concentrated within the central 2 pc of the larger radio shell. The spectrum shows strong Kα lines from highly ionized ions of S, Ar, Ca, and Fe. A simple isothermal plasma model gives electron temperature ~2 keV, absorption column ~1 × 1023 H cm-2, luminosity ~8 × 1034 ergs s-1 in the 2-10 keV band, and gas mass ~2η1/2 M☉ with a filling factor η. The plasma appears to be rich in heavy elements, overabundant by roughly a factor of 4 with respect to solar abundances, and shows a spatial gradient of elemental abundance; the spatial distribution of iron is more compact than that of the lighter elements. The gas mass and elemental abundance of the X-ray emission support the long-standing hypothesis that Sgr A East is a supernova remnant (SNR), perhaps produced by the Type II supernova explosion of a massive star with a main-sequence mass of 13-20 M☉. The combination of the radio and X-ray morphologies classifies Sgr A East as a new metal-rich "mixed morphology" (MM) SNR. The size of the Sgr A East radio shell is the smallest of the known MM SNRs, which strongly suggests that the ejecta have expanded into a very dense interstellar medium. The ejecta-dominated chemical compositions of the plasma indicate that the ambient materials should be highly homogeneous. We thus evaluate a simplified dynamical evolution model where an SNR was formed about 10,000 yr ago and expanded into an ambient medium with a homogeneous density of 103 cm-3. The model roughly reproduces most of the observed properties in the X-ray and radio wavelengths. A comparison with the radio observations requires the dense ambient medium to be ionized, but a luminous X-ray irradiator with an expected X-ray luminosity of ~1040 ergs s-1 is not currently present. The presence of the ionized gas may be explained if the massive black hole (MBH) associated with the compact, nonthermal radio source Sgr A* was bright in X-rays about 300 yr ago but is presently dim. It is possible that the dust/molecular ridge compressed by the forward shock of Sgr A East hit Sgr A* in the past, and the passage of the ridge may have supplied material to accrete onto the black hole in the past and may have removed material from the black hole vicinity, leading to its present quiescent state. This may be a specific example of the intimate relationship between an SNR and MBH accretion activity in galactic nuclei.

Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: The presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter as discussed by the authors, and it has been shown that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically.
Abstract: Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates1,2,3. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere4,5,6. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically4,5,6; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.

Journal ArticleDOI
TL;DR: In this article, the authors detect clear ocean-to-atmospheric feedback in the Yellow and East China (YEC) Seas that is triggered by the submerged ocean bottom topography.
Abstract: [1] Whether and how the atmosphere reacts to changes in extratropical sea surface temperature (SST) is under intense debate and this lack of understanding has been a major obstacle in the study of non-El Nino climate variability. Using new satellite measurements, we detect clear ocean-to-atmospheric feedback in the Yellow and East China (YEC) Seas that is triggered by the submerged ocean bottom topography. Under intense surface cooling in winter, water properties are well mixed up to 100 m deep. Ocean depth thus has a strong influence on SST of the continental shelf, leading to a remarkable collocation of warm tongues and deep channels. High winds and increased cloudiness are found over these warm tongues; one such band of ocean-atmospheric co-variation meanders through the basin, following a deep channel for an amazing distance of 1000 km. In addition to these climatic effects, the Kuroshio Front—where the warm current meets the much colder shelf water—strengthens the growth of storms.

Journal ArticleDOI
01 Oct 2002-Icarus
TL;DR: In this paper, the authors carried out simultaneous photometric and polarimetric measurements of laboratory samples that simulate the structure of planetary regoliths Computer modeling of shadow-hiding and coherent backscatter in regolith-like media are also presented.

Journal ArticleDOI
TL;DR: In this paper, the first significant IR electrochromism in any material, to the best of our knowledge, in the 0.4 through 45 μm region was reported in conducting polymers (CPs).
Abstract: Advanced materials with large and dynamic variation in thermal properties, sought for urgent defense and space applications, have heretofore been elusive. Conducting polymers (CPs) have shown some intrinsic variation of mid- to far-infrared (IR) signature in this respect, but the practical utilization of this has remained elusive. We report herein the first significant IR electrochromism in any material, to our knowledge, in the 0.4 through 45 μm region. This is seen in practical CP devices in the form of thin (<0.5 mm), flexible, entirely solid-state, variable area (1 cm2 to 1 m2) flat panels. Typical properties include: very high reflectance variation; switching times <2 s; cyclabilities of 105 cycles; emittance variation from 0.32 to 0.79; solar absorptance variation from 0.39 to 0.79; operating temperatures of –35 to +85 °C; durability against γ-radiation to 7.6 Mrad, vacuum to 10–6 torr, and simulated solar wind (e.g., 6.5 × 1016 e/cm2 @ 10 keV).

Journal ArticleDOI
TL;DR: In this paper, the authors deal with initial analyzes of radio occultation measurements of the ionosphere carried out on board the CHAMP satellite since 11 April 2001, and the accuracy of the operationally retrieved electron density profiles has been estimated by comparing with independent measurements.
Abstract: [1] The paper deals with initial analyzes of radio occultation measurements of the ionosphere carried out on board the CHAMP satellite since 11 April 2001. The accuracy of the operationally retrieved electron density profiles has been estimated by comparing with independent measurements. The derived ionospheric key parameters such as f0F2 and hmF2 agree with a standard deviation of 18 and 13%, respectively. It is shown that the CHAMP data products can essentially contribute to the establishment of operational data sets of the global electron density distribution for developing and improving global ionospheric models and to provide operational space weather information.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a composite K-z diagram of radio-loud and radio-quiet galaxies, selected from the HDF-North and the Hawaii surveys.
Abstract: We present optical and/or near-IR images of 128 ultra steep spectrum (USS) radio sources. Roughly half of the objects are identified in the optical images (R 94% are detected at K 5). The major axes of the identifications in K-band are preferentially oriented along the radio axes, with half of them having compact morphologies. The 22 sources with spectroscopic redshifts and K-band magnitudes follow the K-z relation found from previous radio samples, but with a larger scatter. We argue that this may be due to a dependence of K-magnitude on the radio power, with the highest radio power sources inhabiting the most massive host galaxies. We present a composite K-z diagram of radio-loud and radio-quiet galaxies, selected from the HDF-North and the Hawaii surveys. Out to z ~ 1, the radio-loud galaxies are >~ 2 magnitudes brighter. We argue that this is not due to a contribution from the AGN or emission lines. This difference strongly suggests that radio galaxies pinpoint the most massive systems out to the highest known redshifts, probably due to the mutual correlation of the mass of the galaxy and the radio power on the mass of the central black hole.

Posted Content
TL;DR: In this article, the authors discuss the principles upon which quantum technology is based and the tools required to develop it and discuss a number of examples of research programs that could deliver quantum technologies in coming decades including; quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.
Abstract: We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including; quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.

Proceedings ArticleDOI
12 Jul 2002
TL;DR: In this article, the authors present a variety of novel horn designs, which overcome some of the limitations discussed above, and compared to the results predicted by theory, in order to overcome these limitations.
Abstract: A variety of Industrial applications exist where power ultrasonic elements such as the ultrasonic horn are used. These included the Automotive, Instruments, Foods, Medical, Textiles and Material Joining and Fabrication Industries. In many of these devices the ultrasonic horn is the key component. The standard transducer used in these devices consists of three main parts, the backing, the piezoelectric elements and the horn. Standard horn designs have changed very little since their inception. There are four common types of standard horns. They are; constant, linear, exponential and stepped, which refer to the degree to which the area changes from the base to the tip. A magnification in the strain occurs in the horn that in general is a function of the ratio of diameters. In addition the device is generally driven at resonance to further amplify the strain. The resonance amplification is in general determined by the mechanical Q (attenuation) of the horn material and radiation damping. The horn length primarily determines the resonance frequency. For a 22 kHz resonance frequency a stepped horn of titanium has a length of approximately 8 cm. Although these standard horns are found in many current industrial designs they suffer from some key limitations. In many applications it would be useful to reduce the resonance frequency however this would require device lengths of the order of fractions of meters which may be impractical. In addition, manufacturing a horn requires the turning down of the stock material (eg. Titanium) from the larger outer diameter to the horn tip diameter, which is both time consuming and wasteful. In this paper we will present a variety of novel horn designs, which overcome some of the limitations discussed above. One particular design that has been found to overcome these limitations is the folded horn. In this design the horn elements are folded which reduce the overall length of the resonator (physical length) but maintain or increase the acoustic length. In addition initial experiments indicate that the tip displacement can be further adjusted by phasing the bending displacements and the extensional displacements. The experimental results for a variety of these and other novel horn designs will be presented and compared to the results predicted by theory.

Journal ArticleDOI
TL;DR: In this paper, the role of magnetic flaring in stellar analogs of the pre-main-sequence Sun based on two 0.5 day observations of the Orion Nebula cluster obtained with the Chandra X-Ray Observatory was addressed.
Abstract: To address the role of energetic processes in the solar nebula, we provide a detailed characterization of magnetic flaring in stellar analogs of the pre-main-sequence Sun based on two 0.5 day observations of the Orion Nebula cluster obtained with the Chandra X-Ray Observatory. The sample consists of 43 stars with masses between 0.7 and 1.4 M☉ and ages from less than 0.3 to 10 Myr. We find that the X-ray luminosities measured in the 0.5-8 keV band are strongly elevated over main-sequence levels with an average = 30.3 ergs s-1 and = -3.9. The X-ray emission is strongly variable within our exposures in nearly all solar analogs; about 30 flares with 29.0 ergs s-1 < log LX(peak) < 31.5 ergs s-1 on timescales from 0.5 to more than 12 hr are seen during the Chandra observations. Analogs of the ≤1 Myr old pre-main-sequence Sun exhibited X-ray flares that are 101.5 times more powerful and 102.5 times more frequent than the most powerful flares seen on the contemporary Sun. Radio observations indicate that acceleration of particles to relativistic energies is efficient in young stellar flares. Extrapolating the solar relationship between X-ray luminosity and proton fluence, we infer that the young Sun exhibited a 105-fold enhancement in energetic protons compared to contemporary levels. Unless the flare geometries are unfavorable, this inferred proton flux on the disk is sufficient to produce the observed meteoritic abundances of several important short-lived radioactive isotopes. Our study thus strengthens the astronomical foundation for local proton spallation models of isotopic anomalies in carbonaceous chondritic meteorites. The radiation, particles, and shocks produced by the magnetic reconnection flares seen with Chandra may also have flash-melted meteoritic chondrules and produce excess 21Ne seen in meteoritic grains.

Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: The results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun, which produces strong electric fields and therefore electron acceleration along the auroral field lines similar to the processes that occur during geomagnetic storms at the Earth.
Abstract: Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.

Journal ArticleDOI
TL;DR: This work defines a socket-based API allowing anyone to create agents that can participate in any Unreal Tournament games, and a set of development tools, sample source code, and nonviolent graphics that form a basic development environment to help users get started in using GameBots.
Abstract: GameBots [1] is a virtual reality platform that allows the creation and evaluation of intelligent agents that interact with a rich 3D continuous dynamic environment. As opposed to previous test beds that focus on a single task and environment (such as soccer simulation [4]), GameBots does not define a single benchmark task. Instead, the GameBots platform comes with a wide variety of predefined tasks and environments and allows anyone to extend these in various ways, or create new challenges. This enables multiagent systems (MAS) and artificial intelligence researchers to explore a wide variety of algorithms and techniques, in areas such as spatial navigation, learning, dynamic resource allocation, multiagent planning, plan-recognition, collaboration, distributed adversarial planning, and human-machine teamwork. GameBots is composed of two components. The first of these is a freely-available open source extension of the commercial Unreal Tournament game engine [3]. It defines a socket-based API allowing anyone to create agents that can participate in any Unreal Tournament games. The second component is a set of development tools, sample source code, and nonviolent graphics (replacements for the default graphics) that form a basic development environment to help users get started in using GameBots. Gal A. Kaminka, Manuela M. Veloso, Steve Schaffer,

Journal ArticleDOI
Abstract: We present an optical and near-infrared study of a 45' × 45' field in NGC 2264, which includes both S Mon and the Cone Nebula. We report photometry at optical (UBVRCIC) and near-infrared (JHK) wavelengths for ~5600 stars and spectroscopic classifications for ~400 of these stars. We identify circumstellar disk candidates using three techniques: excess ultraviolet (U-V) emission, excess near-IR (I-K and H-K) emission, and Hα emission-line equivalent widths for those stars with spectra. We find generally good correlation between disk indicators thought to originate from different physical processes. We find little if any evolution of disk fraction with stellar age or mass. However, when we derive mass accretion rates () from the excess emission at U, we find that decreases with age over the age range spanned by our data, ~0.1–5 Myr, and increases with mass over the range ~0.25–1 M⊙. These findings are comparable to results found previously by us in the Orion Nebula cluster flanking fields.

Journal ArticleDOI
TL;DR: In this article, the role of magnetic flaring in stellar analogs of the pre-main sequence Sun based on 23 hours observations of 43 analogs in the Orion Nebula Cluster obtained with the Chandra X-ray Observatory was investigated.
Abstract: To address the role of energetic processes in the solar nebula, we provide a detailed characterization of magnetic flaring in stellar analogs of the pre-main sequence Sun based on 23 hours observations of 43 analogs of the young Sun in the Orion Nebula Cluster obtained with the Chandra X-ray Observatory. We find the X-ray luminosities are strongly elevated over main sequence levels with average = 30.3 erg/s and = -3.9 (0.5-8 keV), and dozens of flares are present. Analogs of the <= 1 My old pre-main sequence Sun exhibit X-ray flares 10^{1.5} times more powerful and 10^{2.5} times more frequent than the most powerful flares seen on the contemporary Sun. Extrapolating the solar relationship between X-ray luminosity and proton fluence, we infer that the young Sun exhibited a 10^5-fold enhancement in energetic protons compared to contemporary levels. Unless the flare geometries are unfavorable, this inferred proton flux on the disk is sufficient to produce the observed meteoritic abundances of several important short-lived radioactive isotopes. Our study thus strengthens the astronomical foundation for local proton spallation models of isotopic anomalies in carbonaceous chondritic meteorites. The radiation, particles and shocks produced by the magnetic reconnection flares seen with Chandra may also have flash melted meteoritic chondrules and produced excess 21-Ne seen in meteoritic grains.

Journal ArticleDOI
TL;DR: A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission, which resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate.
Abstract: The Multi-angle Imaging SpectroRadiometer (MISR) instrument, launched in December 1999 on the NASA EOS Terra satellite, produces images in the red band at 275-m resolution, over a swath width of 360 km, for the nine camera angles 70.5/spl deg/, 60/spl deg/, 45.6/spl deg/, and 26.1/spl deg/ forward, nadir, and 26.1/spl deg/, 45.6/spl deg/, 60/spl deg/, and 70.5/spl deg/ aft. A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission. Accuracy and speed requirements necessitated the use of a combination of area-based and feature-based stereo-matchers with only pixel-level acuity. Feature-based techniques are used for cloud motion retrieval with the off-nadir MISR camera views, and the motion is then used to provide a correction to the disparities used to measure cloud-top heights which are derived from the innermost three cameras. Intercomparison with a previously developed "superstereo" matcher shows that the results are very comparable in accuracy with much greater coverage and at ten times the speed. Intercomparison of feature-based and area-based techniques shows that the feature-based techniques are comparable in accuracy at a factor of eight times the speed. An assessment of the accuracy of the area-based matcher for cloud-free scenes demonstrates the accuracy and completeness of the stereo-matcher. This trade-off has resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate. Examples are shown of the application of the MISR stereo-matchers on several difficult scenes which demonstrate the efficacy of the matching approach.

Journal ArticleDOI
TL;DR: These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations.
Abstract: Transition states in phase space are identified and shown to regulate the rate of escape of asteroids temporarily captured in circumplanetary orbits. The transition states, similar to those occurring in chemical reaction dynamics, are then used to develop a statistical semianalytical theory for the rate of escape of asteroids temporarily captured by Mars. Theory and numerical simulations are found to agree to better than 1%. These calculations suggest that further development of transition state theory in celestial mechanics, as an alternative to large-scale numerical simulations, will be a fruitful approach to mass transport calculations.

Journal ArticleDOI
28 Feb 2002-Nature
TL;DR: Observations of 13.8 GHz synchrotron emission that confirm the presence of electrons with energies up to 50 MeV are reported, collected during the Cassini fly-by of Jupiter.
Abstract: Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission1: thermal atmospheric emission and synchrotron emission2 from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements3,4 confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at energies up to 20 MeV. Although most radiation belt models predict electrons at higher energies5,6, adiabatic diffusion theory can account only for energies up to around 20 MeV. Unambiguous evidence for more energetic electrons is lacking. Here we report observations of 13.8 GHz synchrotron emission that confirm the presence of electrons with energies up to 50 MeV; the data were collected during the Cassini fly-by of Jupiter. These energetic electrons may be repeatedly accelerated through an interaction with plasma waves, which can transfer energy into the electrons. Preliminary comparison of our data with model results suggests that electrons with energies of less than 20 MeV are more numerous than previously believed.