scispace - formally typeset
Search or ask a question

Showing papers by "Jet Propulsion Laboratory published in 2017"


Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations


Book
28 Oct 2017
TL;DR: In this article, the spectral density S y (f) of the function y(t) where the spectrum is considered to be one-sided on a per hertz basis is defined.
Abstract: Consider a signal generator whose instantaneous output voltage V(t) may be written as V(t) = [V 0 + ??(t)] sin [2??v 0 t + s(t)] where V 0 and v 0 are the nominal amplitude and frequency, respectively, of the output. Provided that ??(t) and ??(t) = (d??/(dt) are sufficiently small for all time t, one may define the fractional instantaneous frequency deviation from nominal by the relation y(t) - ??(t)/2??v o A proposed definition for the measure of frequency stability is the spectral density S y (f) of the function y(t) where the spectrum is considered to be one sided on a per hertz basis. An alternative definition for the measure of stability is the infinite time average of the sample variance of two adjacent averages of y(t); that is, if y k = 1/t ??? tk+r = y(t k ) y(t) dt where ?? is the averaging period, t k+1 = t k + T, k = 0, 1, 2 ..., t 0 is arbitrary, and T is the time interval between the beginnings of two successive measurements of average frequency; then the second measure of stability is ?? y 2(??) ??? (y k+1 - y k )2/2 where denotes infinite time average and where T = ??. In practice, data records are of finite length and the infinite time averages implied in the definitions are normally not available; thus estimates for the two measures must be used. Estimates of S y (f) would be obtained from suitable averages either in the time domain or the frequency domain.

725 citations


Journal ArticleDOI
TL;DR: In this paper, the precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability $p\lesssim3\times10^{-4}$) of an optical and persistent radio counterpart.
Abstract: The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability $p\lesssim3\times10^{-4}$) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended ($0.6^{\prime\prime}-0.8^{\prime\prime}$) object displaying prominent Balmer and [OIII] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, $m_{r^\prime} = 25.1$ AB mag dwarf galaxy at a redshift of $z=0.19273(8)$, corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter $\lesssim4$ kpc and a stellar mass of $M_*\sim4-7\times 10^{7}\,M_\odot$, assuming a mass-to-light ratio between 2 to 3$\,M_\odot\,L_\odot^{-1}$. Based on the H$\alpha$ flux, we estimate the star formation rate of the host to be $0.4\,M_\odot\,\mathrm{yr^{-1}}$ and a substantial host dispersion measure depth $\lesssim 324\,\mathrm{pc\,cm^{-3}}$. The net dispersion measure contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al (2017) is offset from the galaxy's center of light by $\sim$200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma ray bursts and superluminous supernovae.

576 citations



Journal ArticleDOI
TL;DR: In this paper, the authors presented a catalogue of similar to 3000 submillimetre sources detected at 850 mu m over similar to 5 deg(2) surveyed as part of the SCUBA-2 Cosmology Legacy Survey (S2CLS).
Abstract: We present a catalogue of similar to 3000 submillimetre sources detected (>= 3.5 sigma) at 850 mu m over similar to 5 deg(2) surveyed as part of the James Clerk Maxwell Telescope (JCMT) SCUBA-2 Cosmology Legacy Survey (S2CLS). This is the largest survey of its kind at 850 mu m, increasing the sample size of 850 mu m selected submillimetre galaxies by an order of magnitude. The wide 850 mu m survey component of S2CLS covers the extragalactic fields: UKIDSS-UDS, COSMOS, Akari-NEP, Extended Groth Strip, Lockman Hole North, SSA22 and GOODS-North. The average 1s depth of S2CLS is 1.2 mJy beam(-1), approaching the SCUBA-2 850 mu m confusion limit, which we determine to be sigma(c) approximate to 0.8 mJy beam(-1). We measure the 850 mu m number counts, reducing the Poisson errors on the differential counts to approximately 4 per cent at S-850 approximate to 3 mJy. With several independent fields, we investigate field-to-field variance, finding that the number counts on 0.5 degrees-1 degrees scales are generally within 50 per cent of the S2CLS mean for S-850 > 3 mJy, with scatter consistent with the Poisson and estimated cosmic variance uncertainties, although there is a marginal (2 sigma) density enhancement in GOODS-North. The observed counts are in reasonable agreement with recent phenomenological and semi-analytic models, although determining the shape of the faint-end slope (S-850 10 mJy there are approximately 10 sources per square degree, and we detect the distinctive up-turn in the number counts indicative of the detection of local sources of 850 mu m emission

287 citations


Journal ArticleDOI
26 May 2017-Science
TL;DR: Juno’s first close pass over Jupiter provides answers and fresh questions about the giant planet, including images of weather in the polar regions and measurements of the magnetic and gravitational fields and microwaves to peer below the visible surface.
Abstract: On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell Near-infrared mapping reveals the relative humidity within prominent downwelling regions Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content

267 citations


Journal ArticleDOI
TL;DR: The Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years has been used in a wide range of applications and research resulting in many new findings as mentioned in this paper.
Abstract: This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

266 citations


Journal ArticleDOI
03 Aug 2017-Nature
TL;DR: In this article, the authors reported a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin.
Abstract: Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphereremains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

258 citations


Journal ArticleDOI
TL;DR: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021, and it will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy as mentioned in this paper.
Abstract: TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

226 citations


Journal ArticleDOI
TL;DR: The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault as mentioned in this paper, and the imaging system sensors are part of a subsystem that provides accurate attitude information near the point of measurement of the magnetic field.
Abstract: The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ∼20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = $1.6 \times 10^{6}\mbox{ nT}$ per axis) with a resolution of ∼0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.

224 citations


Journal ArticleDOI
26 Jan 2017
TL;DR: The current status of diode technology is reviewed, detailing some of the different ways for fabricating THz chips and applications enabled by these diodes.
Abstract: Found in many terahertz (THz) and submillimeter-wave systems, GaAs Schottky diodes continue to be one of the most useful THz devices. As a low-parasitic device that operates well into the THz range, Schottky diodes provide useful detection and power generation for a number of practical applications. Mixers and multipliers, working as high as ~3 THz, have already been demonstrated. This paper reviews the current status of diode technology, detailing some of the different ways for fabricating THz chips. An overview regarding the current state of technology and performance for THz frequency multipliers and mixers is presented, along with applications enabled by these diodes.

Journal ArticleDOI
TL;DR: The Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model as mentioned in this paper.
Abstract: The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.

Journal ArticleDOI
12 May 2017-Science
TL;DR: HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals, according to a detailed atmospheric study of the transiting Neptune-mass exoplanet.
Abstract: A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b’s atmospheric heavy element content ( 4.8 − 4.0 + 21.5 times solar). This likely indicates that HAT-P-26b’s atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.

Journal ArticleDOI
TL;DR: Junior as discussed by the authors is the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere, where it carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter's radiation belts.
Abstract: In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.

Journal ArticleDOI
28 Jun 2017
TL;DR: Tests in microgravity show that robotic grippers based on dry adhesion are a viable option for eliminating space debris in low Earth orbit and for enhancing missions in space.
Abstract: Grasping and manipulating uncooperative objects in space is an emerging challenge for robotic systems. Many traditional robotic grasping techniques used on Earth are infeasible in space. Vacuum grippers require an atmosphere, sticky attachments fail in the harsh environment of space, and handlike opposed grippers are not suited for large, smooth space debris. We present a robotic gripper that can gently grasp, manipulate, and release both flat and curved uncooperative objects as large as a meter in diameter while in microgravity. This is enabled by (i) space-qualified gecko-inspired dry adhesives that are selectively turned on and off by the application of shear forces, (ii) a load-sharing system that scales small patches of these adhesives to large areas, and (iii) a nonlinear passive wrist that is stiff during manipulation yet compliant when overloaded. We also introduce and experimentally verify a model for determining the force and moment limits of such an adhesive system. Tests in microgravity show that robotic grippers based on dry adhesion are a viable option for eliminating space debris in low Earth orbit and for enhancing missions in space.

Journal ArticleDOI
TL;DR: Juno is a PI-led mission to Jupiter, the second mission in NASA’s New Frontiers Program as mentioned in this paper, which carries eight science instruments that perform nine science investigations (radio science utilizes the communications antenna).
Abstract: Juno is a PI-led mission to Jupiter, the second mission in NASA’s New Frontiers Program. The 3625-kg spacecraft spins at 2 rpm and is powered by three 9-meter-long solar arrays that provide ∼500 watts in orbit about Jupiter. Juno carries eight science instruments that perform nine science investigations (radio science utilizes the communications antenna). Juno’s science objectives target Jupiter’s origin, interior, and atmosphere, and include an investigation of Jupiter’s polar magnetosphere and luminous aurora.

Journal ArticleDOI
TL;DR: It is shown that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH4 per year from the 2001–2007 to the 2008–2014 time periods using satellite measurements of CO and CH4, nearly twice the decrease expected from prior estimates.
Abstract: Several viable but conflicting explanations have been proposed to explain the recent ~8 p.p.b. per year increase in atmospheric methane after 2006, equivalent to net emissions increase of ~25 Tg CH4 per year. A concurrent increase in atmospheric ethane implicates a fossil source; a concurrent decrease in the heavy isotope content of methane points toward a biogenic source, while other studies propose a decrease in the chemical sink (OH). Here we show that biomass burning emissions of methane decreased by 3.7 (±1.4) Tg CH4 per year from the 2001–2007 to the 2008–2014 time periods using satellite measurements of CO and CH4, nearly twice the decrease expected from prior estimates. After updating both the total and isotopic budgets for atmospheric methane with these revised biomass burning emissions (and assuming no change to the chemical sink), we find that fossil fuels contribute between 12–19 Tg CH4 per year to the recent atmospheric methane increase, thus reconciling the isotopic- and ethane-based results. The drivers of the increase in atmospheric methane since 2006 remain unclear. Here, the authors use satellite and in situ measurements of CO and CH4 to show that fossil fuels and biogenic sources contribute 12–19 Tg CH4per year and 12–16 Tg CH4per year respectively to the recent atmospheric methane increase.

Journal ArticleDOI
TL;DR: In tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality, pushing back by ∼600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.
Abstract: Light from two stars in the Milky Way has been used to test an open loophole of quantum physics.

Journal ArticleDOI
TL;DR: In this article, the authors provide a synthesis of progress in the development and application of human impact modelling in hydrological models and highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface.
Abstract: Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of largescale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models.

Journal ArticleDOI
TL;DR: WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared as mentioned in this paper, which is relatively high with respect to the currently established mass-metallicity trends.
Abstract: WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8–1.1 μm) and G141 (1.1–1.7 μm) spectroscopic grisms. We measure the predicted high-amplitude H_2O feature centered at 1.4 μm and the smaller amplitude features at 0.95 and 1.2 μm, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 μm. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T_(eq) = 1030_(-20)^(+30) K, and atmospheric metallicity 151_(-46)^(+48) x solar, which is relatively high with respect to the currently established mass–metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.

Journal ArticleDOI
TL;DR: The Network for the Detection of Atmospheric Composition Change (NDACC) as mentioned in this paper is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning.
Abstract: . The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson–Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

Journal ArticleDOI
TL;DR: In this article, it was shown that more than 10GW of heat can be generated by tidal friction inside the unconsolidated rocky core of Enceladus, which can be sustained for tens of millions to billions of years.
Abstract: Geophysical data from the Cassini spacecraft imply the presence of a global ocean underneath the ice shell of Enceladus 1 , only a few kilometres below the surface in the South Polar Terrain 2–4 . Chemical analyses indicate that the ocean is salty 5 and is fed by ongoing hydrothermal activity 6–8 . In order to explain these observations, an abnormally high heat power (>20 billion watts) is required, as well as a mechanism to focus endogenic activity at the south pole 9,10 . Here, we show that more than 10 GW of heat can be generated by tidal friction inside the unconsolidated rocky core. Water transport in the tidally heated permeable core results in hot narrow upwellings with temperatures exceeding 363 K, characterized by powerful (1–5 GW) hotspots at the seafloor, particularly at the south pole. The release of heat in narrow regions favours intense interaction between water and rock, and the transport of hydrothermal products from the core to the plume sources. We are thus able to explain the main global characteristics of Enceladus: global ocean, strong dissipation, reduced ice-shell thickness at the south pole and seafloor activity. We predict that this endogenic activity can be sustained for tens of millions to billions of years. Tidal forcing within a very porous (unconsolidated) core can generate enough energy to drive all the observed global features of Enceladus. This activity can be sustained up to several billion years.

Journal ArticleDOI
TL;DR: In this paper, the radial and vertical structure of the Herbig AeBe stars at scales of order 1 au and the properties of the dust grains were inferred by fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation.
Abstract: Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order 1 au, and the properties of the dust grains. Methods. The program objects (51 in total) were observed with the H-band (1.6 μm) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results. We find that dust at the inner rim of the disk has a sublimation temperature T_(sub) ≈ 1800 K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide δr/r ≥ 0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r ≈ 0.2, flaring to z/r ≈ 0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class.

Journal ArticleDOI
TL;DR: The Global Space-based Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments was used to provide the input data to the construction of the GloSSAC stratospheric aerosol forcing data set.
Abstract: . We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979–2014) and we have extended it through 2016 following an identical process. GloSSAC focuses on the Stratospheric Aerosol and Gas Experiment (SAGE) series of instruments through mid-2005, and on the Optical Spectrograph and InfraRed Imager System (OSIRIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data thereafter. We also use data from other space instruments and from ground-based, air, and balloon borne instruments to fill in key gaps in the data set. The end result is a global and gap-free data set focused on aerosol extinction coefficient at 525 and 1020 nm and other parameters on an “as available” basis. For the primary data sets, we developed a new method for filling the post-Pinatubo eruption data gap for 1991–1993 based on data from the Cryogenic Limb Array Etalon Spectrometer. In addition, we developed a new method for populating wintertime high latitudes during the SAGE period employing a latitude-equivalent latitude conversion process that greatly improves the depiction of aerosol at high latitudes compared to earlier similar efforts. We report data in the troposphere only when and where it is available. This is primarily during the SAGE II period except for the most enhanced part of the Pinatubo period. It is likely that the upper troposphere during Pinatubo was greatly enhanced over non-volcanic periods and that domain remains substantially under-characterized. We note that aerosol levels during the OSIRIS/CALIPSO period in the lower stratosphere at mid- and high latitudes is routinely higher than what we observed during the SAGE II period. While this period had nearly continuous low-level volcanic activity, it is possible that the enhancement in part reflects deficiencies in the data set. We also expended substantial effort to quality assess the data set and the product is by far the best we have produced. GloSSAC version 1.0 is available in netCDF format at the NASA Atmospheric Data Center at https://eosweb.larc.nasa.gov/ . GloSSAC users should cite this paper and the data set DOI ( https://doi.org/10.5067/GloSSAC-L3-V1.0 ).

Journal ArticleDOI
TL;DR: In this paper, the authors describe the development of a deployable high gain antenna (HGA) for the proposed Mars Cube One (MarCO) CubeSat mission to Mars.
Abstract: This article describes the development of a deployable high-gain antenna (HGA) for the proposed Mars Cube One (MarCO) CubeSat mission to Mars. The antenna is a new folded-panel reflectarray (FPR) designed to fit on a 6U (10 ? 20 ? 34 cm3) CubeSat bus and support 8.425-GHz Mars-to-Earth telecommunications. The FPR provides a gain of 29.2 dBic with right-hand circular polarization (RHCP). Small stowage volume is a key advantage of the FPR design, as it only consumes ~4% of the usable spacecraft payload volume with a mass of less than 1 kg.

Journal ArticleDOI
TL;DR: In this article, the role of the initial Al and Ti-bearing condensates as the main source of cloud material is investigated. But the authors focus on super-hot Jupiters, where a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase.
Abstract: Deciphering the role of clouds is central to our understanding of exoplanet atmospheres, as they have a direct impact on the temperature and pressure structure, and observational properties of the planet. Super-hot Jupiters occupy a temperature regime similar to low mass M-dwarfs, where minimal cloud condensation is expected. However, observations of exoplanets such as WASP-12b (Teq ~ 2500 K) result in a transmission spectrum indicative of a cloudy atmosphere. We re-examine the temperature and pressure space occupied by these super-hot Jupiter atmospheres, to explore the role of the initial Al- and Ti-bearing condensates as the main source of cloud material. Due to the high temperatures a majority of the more common refractory material is not depleted into deeper layers and would remain in the vapor phase. The lack of depletion into deeper layers means that these materials with relatively low cloud masses can become significant absorbers in the upper atmosphere. We provide condensation curves for the initial Al- and Ti-bearing condensates that may be used to provide quantitative estimates of the effect of metallicity on cloud masses, as planets with metal-rich hosts potentially form more opaque clouds because more mass is available for condensation. Increased metallicity also pushes the point of condensation to hotter, deeper layers in the planetary atmosphere further increasing the density of the cloud. We suggest that planets around metal-rich hosts are more likely to have thick refractory clouds, and discuss the implication on the observed spectra of WASP-12b.

Journal ArticleDOI
TL;DR: In this article, the Carnegie Supernova Project (CSP-I) near-infrared photometry of 134 supernovae (SNe) with probable white dwarf progenitors was presented.
Abstract: We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004–2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z = 0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.

Posted Content
TL;DR: In this paper, the authors report on the recent advances in theory, instrumentation and observation that were presented in these workshops and some of the opportunities and challenges that were identified looking forward.
Abstract: Following the first two annual intensity mapping workshops at Stanford in March 2016 and Johns Hopkins in June 2017, we report on the recent advances in theory, instrumentation and observation that were presented in these meetings and some of the opportunities and challenges that were identified looking forward. With preliminary detections of CO, [CII], Lya and low-redshift 21cm, and a host of experiments set to go online in the next few years, the field is rapidly progressing on all fronts, with great anticipation for a flood of new exciting results. This current snapshot provides an efficient reference for experts in related fields and a useful resource for nonspecialists. We begin by introducing the concept of line-intensity mapping and then discuss the broad array of science goals that will be enabled, ranging from the history of star formation, reionization and galaxy evolution to measuring baryon acoustic oscillations at high redshift and constraining theories of dark matter, modified gravity and dark energy. After reviewing the first detections reported to date, we survey the experimental landscape, presenting the parameters and capabilities of relevant instruments such as COMAP, mmIMe, AIM-CO, CCAT-p, TIME, CONCERTO, CHIME, HIRAX, HERA, STARFIRE, MeerKAT/SKA and SPHEREx. Finally, we describe recent theoretical advances: different approaches to modeling line luminosity functions, several techniques to separate the desired signal from foregrounds, statistical methods to analyze the data, and frameworks to generate realistic intensity map simulations.

Journal ArticleDOI
TL;DR: Venus lacks plate tectonics, but some trenches on Venus resemble subduction zones as discussed by the authors, and upwelling plumes can initiate localized subduction of a thin lithosphere such as the one on Venus.
Abstract: Venus lacks plate tectonics, but some trenches on Venus resemble subduction zones. Laboratory experiments suggest that upwelling plumes can initiate localized subduction of a thin lithosphere such as the one on Venus.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the defect concentrations can be tuned with small variation of the chemical potentials (composition) of each element in complex multinary compounds (ternary, quaternary, and higher) by mapping the boundaries where different competing impurity phases form.
Abstract: Complex multinary compounds (ternary, quaternary, and higher) offer countless opportunities for discovering new semiconductors for applications such as photovoltaics and thermoelectrics. However, controlling doping has been a major challenge in complex semiconductors as there are many possibilities for charged intrinsic defects (e.g., vacancies, interstitials, antisite defects) whose energy depends on competing impurity phases. Even in compounds with no apparent deviation from a stoichiometric nominal composition, such defects commonly lead to free carrier concentrations in excess of 10^(20) cm^(−3). Nevertheless, by slightly altering the nominal composition, these defect concentrations can be tuned with small variation of the chemical potentials (composition) of each element. While the variation of chemical composition is undetectable, it is shown that the changes can be inferred by mapping (in nominal composition space) the boundaries where different competing impurity phases form. In the inexpensive Zintl compound Ca_9Zn_(4+x)Sb_9, the carrier concentrations can be finely tuned within three different three-phase regions by altering the nominal composition (x = 0.2–0.8), enabling the doubling of thermoelectric performance (zT). Because of the low thermal conductivity, the zT can reach as high as 1.1 at 875 K, which is one of the highest among the earth abundant p-type thermoelectrics with no ion conducting.