scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: A hierarchical functional intelligent autonomous control architecture is introduced here and its functions are described in detail.
Abstract: Autonomous control systems are designed to perform well under significant uncertainties in the system and environment for extended periods of time, and they must be able to compensate for system failures without external intervention. Intelligent autonomous control systems use techniques from the field of artificial intelligence to achieve this autonomy. Such control systems evolve from conventional control systems by adding intelligent components, and their development requires interdisciplinary research. A hierarchical functional intelligent autonomous control architecture is introduced here and its functions are described in detail. The fundamental issues in autonomous control system modelling and analysis are discussed.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the annular disk appears to be inclined by 31N7 � 1N6 from face-on, with the disk major-axis P.A. at 107 � � 2 �.
Abstract: HST NICMOS PSF-subtractedcoronagraphicobservationsof HD181327haverevealedthepresenceofaringlike disk of circumstellar debris seen in 1.1 � m light scattered by the disk grains, surrounded by a diffuse outer region of lower surface brightness. The annular disk appears to be inclined by 31N7 � 1N6 from face-on, with the disk major-axis P.A. at 107 � � 2 � . The total 1.1 � m flux density of the light scattered by the disk (at 1B2 < r < 5B0) of 9:6 � 0:8 mJy is 0:17% � 0:015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36AUwideannuluscenteredonthepeakoftheradialsurfacebrightness(SB)profile86:3 � 3:9AUfromthestar,well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities, assuming blackbody grains (� 22 AU). The 1.1 � m light scattered by the ring (1) appears bilaterally symmetric, (2) exhibits directionallypreferentialscatteringwellrepresentedbyaHenyey-Greensteinscatteringphasefunctionwith g HG ¼ 0:30 � 0:03, and (3) has a median SB (over all azimuth angles) at the 86.3 AU radius of peak SB of 1:00 � 0:07 mJy arcsec � 2 .N o photocentric offset is seen in the ring relative to the position of the central star. A low SB diffuse halo is seen in the NICMOS image to a distance of � 4 00 . Deeper 0.6 � m Hubble Space Telescope (HST) ACS PSF-subtracted coronagraphic observationsreveala faint (V � 21:5 mag arcsec � 2 ) outer nebulosityat4 00 < r < 9 00 , asymmetrically brighter to the north of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4Y8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of � 1 � mo f� 4MMoon. Subject headingg circumstellar matter — infrared: stars — planetary systems: protoplanetary disks — stars: individual (HD 181327)

149 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit.
Abstract: Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

149 citations

Journal ArticleDOI
01 May 2008-Icarus
TL;DR: The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate as discussed by the authors, and the presence of interdunes indicates that Titan's dunefields are both mature and recently active.

149 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the combined GPS velocity field of the eastern Mediterranean for the period 1988 to 1996 to determine crustal deformation strain rates in a region comprising the Hellenic arc, the Aegean Sea, and western Anatolia.

149 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445