scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
Mattia Negrello1, Rosalind Hopwood1, G. de Zotti, Asantha Cooray2, Aprajita Verma3, J. J. Bock4, J. J. Bock5, David T. Frayer6, Mark Gurwell7, Alain Omont8, R. Neri, Helmut Dannerbauer9, Lerothodi Leonard Leeuw10, Lerothodi Leonard Leeuw11, Elizabeth J. Barton2, Jeff Cooke5, Jeff Cooke2, S. Kim2, E. da Cunha12, Giulia Rodighiero13, Peter Timothy Cox, D. G. Bonfield14, Matt J. Jarvis14, Steve Serjeant1, Rob Ivison15, Simon Dye16, Itziar Aretxaga17, David H. Hughes17, Edo Ibar, Frank Bertoldi18, Ivan Valtchanov19, Stephen Anthony Eales16, Loretta Dunne20, Simon P. Driver21, Robbie Richard Auld16, S. Buttiglione, Antonio Cava22, Antonio Cava23, C. A. Grady24, David L. Clements25, Aliakbar Dariush16, Jacopo Fritz26, Denis Hill21, J. B. Hornbeck27, Lee S. Kelvin21, Guilaine Lagache28, M. López-Caniego23, J. González-Nuevo, Steve Maddox20, Enzo Pascale16, Michael Pohlen16, E. E. Rigby20, Aaron S. G. Robotham21, Chris Simpson29, Daniel J. Smith20, P. Temi30, Mark Thompson14, B. E. Woodgate24, Donald G. York31, James E. Aguirre32, Alexandre Beelen28, Andrew Blain5, Andrew J. Baker33, Mark Birkinshaw34, R. Blundell7, Charles M. Bradford5, Charles M. Bradford4, Denis Burgarella35, Luigi Danese, James Dunlop, S. Fleuren36, Jason Glenn37, Andrew I. Harris38, Julia Kamenetzky37, Roxana Lupu32, Ronald J. Maddalena6, Barry F. Madore39, P. R. Maloney37, Hideo Matsuhara40, M. J. Michaowski15, Eric J. Murphy, B. J. Naylor4, Hien Nguyen4, Cristina Popescu41, Steve Rawlings3, Dimitra Rigopoulou42, Dimitra Rigopoulou3, Douglas Scott43, Kimberly S. Scott32, Mark Seibert39, Ian Smail44, Richard J. Tuffs45, Joaquin Vieira5, P. van der Werf15, P. van der Werf46, Jonas Zmuidzinas4, Jonas Zmuidzinas5 
05 Nov 2010
TL;DR: Early data from the Herschel Astrophysical Terahertz Large Area Survey are used to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.
Abstract: Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

436 citations

Journal ArticleDOI
TL;DR: In this article, the relative ages of the oldest galaxies in the universe as a function of redshift, dz/dt, were calculated from SDSS galaxies and an independent estimate for the Hubble constant, H_0 = 69 \pm 12 km s-1 Mpc-1.
Abstract: We place tight constraints on the redshift-averaged, effective value of the equation of state of dark energy, w, using only the absolute ages of Galactic stars and the observed position of the first peak in the angular power spectrum of the CMB. We find w -1, this finding suggests that within our uncertainties, dark energy is indistinguishable from a classical vacuum energy term. We detect a correlation between the ages of the oldest galaxies and their redshift. This opens up the possibility of measuring w(z) by computing the relative ages of the oldest galaxies in the universe as a function of redshift, dz/dt. We show that this is a realistic possibility by computing dz/dt at z~0 from SDSS galaxies and obtain an independent estimate for the Hubble constant, H_0 = 69 \pm 12 km s-1 Mpc-1. The small number of galaxies considered at z>0.2 does not yield, currently, a precise determination of w(z), but shows that the age--redshift relation is consistent with a Standard LCDM universe with $w=-1$.

436 citations

Journal ArticleDOI
TL;DR: Using the notion of the "spacing" between ordered exponential random variables, a performance analysis of the generalized selection combining (GSC) diversity scheme over Rayleigh fading channels is presented and compared with that of the conventional maximal-ratio combining and selection combining schemes.
Abstract: Using the notion of the "spacing" between ordered exponential random variables, a performance analysis of the generalized selection combining (GSC) diversity scheme over Rayleigh fading channels is presented and compared with that of the conventional maximal-ratio combining and selection combining schemes. Starting with the moment generating function (MGF) of the GSC output signal-to-noise ratio (SNR), we derive closed-form expressions for the average combined SNR, outage probability, and average error probability of a wide variety of modulation schemes operating over independently, identically distributed (i.i.d.) diversity paths. Because of their simple form, these expressions readily allow numerical evaluation for cases of practical interest. The results are also extended to the case of non-i.i.d. diversity paths.

433 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the interplanetary shock/electric field event of 5-6 November 2001 using GPS receiver data from CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite.
Abstract: The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from ~100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ~33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of ~54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was ~45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked ~2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a ~55-60% increase in equatorial ionospheric TEC to values above ~430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at ~1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is ~80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above ~430 km decreased to values ~45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was ~16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

433 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008.
Abstract: We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity.

429 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445