scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
N. S. Kardashev1, V. V. Khartov, V. V. Abramov2, V. Yu. Avdeev1, A. V. Alakoz1, Yu. A. Aleksandrov1, S. Ananthakrishnan3, V. V. Andreyanov1, A. S. Andrianov1, N. M. Antonov1, M. I. Artyukhov, M. Yu. Arkhipov1, W. Baan4, N.G. Babakin1, V. E. Babyshkin, N. Bartel5, K. G. Belousov1, A. A. Belyaev, J. J. Berulis1, Bernard F. Burke6, A. V. Biryukov1, A. E. Bubnov2, M. S. Burgin1, G. Busca, A. A. Bykadorov, V. S. Bychkova1, V. I. Vasil’kov1, K. J. Wellington7, I. S. Vinogradov1, R. Wietfeldt8, P. A. Voitsik1, A. S. Gvamichava1, I. A. Girin1, Leonid I. Gurvits9, Leonid I. Gurvits10, R. D. Dagkesamanskii1, L. D’Addario8, Gabriele Giovannini11, Gabriele Giovannini12, D. L. Jauncey7, Peter E. Dewdney, A. A. D’yakov2, Vladimir Zharov13, V. I. Zhuravlev1, G. S. Zaslavskii2, M. V. Zakhvatkin2, A. N. Zinov’ev1, Yu. Ilinen, A. V. Ipatov2, B. Z. Kanevskii1, I. A. Knorin1, J. L. Casse10, K. I. Kellermann14, Yu. A. Kovalev1, Yu. Yu. Kovalev1, Yu. Yu. Kovalev15, A. V. Kovalenko1, B. L. Kogan16, R. V. Komaev, A. A. Konovalenko17, G. D. Kopelyanskii1, Yu. A. Korneev1, V. I. Kostenko1, A. N. Kotik1, B. B. Kreisman1, A. Yu. Kukushkin2, V. F. Kulishenko17, D. N. Cooper7, A. M. Kutkin1, Wayne Cannon5, M. G. Larionov1, Mikhail M. Lisakov1, L. N. Litvinenko17, S. F. Likhachev1, L. N. Likhacheva1, A. P. Lobanov15, S. V. Logvinenko1, Glen Langston14, K. McCracken7, S. Yu. Medvedev, M. V. Melekhin, A. V. Menderov, David W. Murphy8, T. A. Mizyakina1, Yu. V. Mozgovoi, N. Ya. Nikolaev1, B. S. Novikov2, B. S. Novikov1, I. D. Novikov1, V. V. Oreshko1, Yu. K. Pavlenko, I. N. Pashchenko1, Yu. N. Ponomarev1, M. V. Popov1, A. Pravin-Kumar3, Robert A. Preston8, V. N. Pyshnov1, I. A. Rakhimov2, V. M. Rozhkov, Jonathan D. Romney14, P. Rocha, V. A. Rudakov1, Antti V. Räisänen18, S. V. Sazankov1, Boris A. Sakharov, S. K. Semenov, V. A. Serebrennikov, R. T. Schilizzi, D. P. Skulachev2, V. I. Slysh1, A. I. Smirnov1, Joel Smith8, V. A. Soglasnov1, K. V. Sokolovskii1, K. V. Sokolovskii13, L. H. Sondaar4, V. A. Stepan’yants2, M. S. Turygin2, S. Yu. Turygin2, A. G. Tuchin2, S. Urpo18, S.D. Fedorchuk1, A. M. Finkel’shtein2, Ed Fomalont14, I. Fejes, A. N. Fomina, Yu. B. Khapin2, G. S. Tsarevskii1, J. A. Zensus15, A. A. Chuprikov1, M. V. Shatskaya1, N. Ya. Shapirovskaya1, A. I. Sheikhet, A. E. Shirshakov, A. Schmidt15, L. A. Shnyreva1, V. V. Shpilevskii2, R. D. Ekers7, V. E. Yakimov1 
TL;DR: The RadioAstron project as mentioned in this paper is targeted at systematic studies of compact radio-emitting sources and their dynamics, including supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei.
Abstract: The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.

259 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic study has been made of periodic orbits in the two-dimensional, elliptic, restricted three-body problem, and eleven hundred periodic orbits have been obtained.
Abstract: A systematic study has been made of periodic orbits in the two-dimensional, elliptic, restricted three-body problem. All ranges of eccentricities, from 0 to 1, and mass-ratios, from 0 to J, have been investigated. Eleven hundred periodic orbits have been obtained. It is concluded that the elliptic problem behaves in a way which is completely different from the circular problem. The main difference is in the stability properties of the periodic orbits. Because of the nonexistence of the Jacobi integral (the elliptic problem is not conservative), the characteristic equation of the monodromy matrix does not have a pair of unit roots, in general. The stability is denned by two real numbers (stability indices) rather than one. Because of that, there are seven general classes of periodic orbits, according to their stability properties. The stability of the periodic orbits has been determined by numerically integrating the variational equations with a recurrent power series method. The results are in contrast with the circular problem, where there are only three classes of orbits (stability, even instability, and odd instability): in the elliptic problem there are one stable class and six unstable classes. The elliptic, restricted three-body problem can be considered as the prototype of all nonintegrable, nonconservative Hamiltonian systems, and in this paper, probably for the first time, a classification of the multipliers is given for these systems. I. Introduction

258 citations

Journal ArticleDOI
03 Aug 2017-Nature
TL;DR: In this article, the authors reported a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin.
Abstract: Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphereremains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

258 citations

Journal ArticleDOI
TL;DR: In this article, the E-mode angular power spectrum was measured with high precision at 21 ≤ l ≤ 335, detecting for the first time the peak expected at l ~ 140.
Abstract: Background Imaging of Cosmic Extragalactic Polarization (BICEP) is a bolometric polarimeter designed to measure the inflationary B-mode polarization of the cosmic microwave background (CMB) at degree angular scales. During three seasons of observing at the South Pole (2006 through 2008), BICEP mapped ~2% of the sky chosen to be uniquely clean of polarized foreground emission. Here, we present initial results derived from a subset of the data acquired during the first two years. We present maps of temperature, Stokes Q and U, E and B modes, and associated angular power spectra. We demonstrate that the polarization data are self-consistent by performing a series of jackknife tests. We study potential systematic errors in detail and show that they are sub-dominant to the statistical errors. We measure the E-mode angular power spectrum with high precision at 21 ≤ l ≤ 335, detecting for the first time the peak expected at l ~ 140. The measured E-mode spectrum is consistent with expectations from a ΛCDM model, and the B-mode spectrum is consistent with zero. The tensor-to-scalar ratio derived from the B-mode spectrum is r = 0.02^(+0.31)_(–0.26), or r < 0.72 at 95% confidence, the first meaningful constraint on the inflationary gravitational wave background to come directly from CMB B-mode polarization.

258 citations

Journal ArticleDOI
TL;DR: It is concluded that a cooperation model is critical for safe and efficient robot navigation in dense human crowds and the salient characteristics of nearly any dynamic navigation algorithm.
Abstract: We consider the problem of navigating a mobile robot through dense human crowds. We begin by exploring a fundamental impediment to classical motion planning algorithms called the “freezing robot problem”: once the environment surpasses a certain level of dynamic complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place or performs unnecessary maneuvers to avoid collisions. We argue that this problem can be avoided if the robot anticipates human cooperation, and accordingly we develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a “multiple goal” extension that models the goal-driven nature of human decision making. We validate this model with an empirical study of robot navigation in dense human crowds 488 runs, specifically testing how cooperation models effect navigation performance. The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 0.8 humans/m2, while a state-of-the-art non-cooperative planner exhibits unsafe behavior more than three times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our non-cooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.

258 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445