scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen9, Matthieu Béthermin9, Matthieu Béthermin7, Andrew Blain3, Alessandro Boselli10, C. Bridge3, Drew Brisbin11, V. Buat10, Denis Burgarella10, N. Castro-Rodríguez12, N. Castro-Rodríguez13, Antonio Cava14, P. Chanial7, Michele Cirasuolo15, David L. Clements8, A. Conley16, L. Conversi4, Asantha Cooray17, Asantha Cooray3, C. D. Dowell2, C. D. Dowell3, Elizabeth Dubois1, Eli Dwek18, Simon Dye19, Stephen Anthony Eales20, David Elbaz7, Duncan Farrah1, A. Feltre21, P. Ferrero12, P. Ferrero13, N. Fiolet9, N. Fiolet22, M. Fox8, Alberto Franceschini21, Walter Kieran Gear20, E. Giovannoli10, Jason Glenn16, Yan Gong17, E. A. González Solares23, Matthew Joseph Griffin20, Mark Halpern24, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis10, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar15, O. Ilbert10, K. G. Isaak25, Rob Ivison15, Rob Ivison6, Guilaine Lagache9, E. Le Floc'h7, L. R. Levenson3, L. R. Levenson2, B. Lo Faro21, Nanyao Y. Lu3, S. C. Madden7, Bruno Maffei26, Georgios E. Magdis7, G. Mainetti21, Lucia Marchetti21, G. Marsden24, J. Marshall3, J. Marshall2, A. M. J. Mortier8, Hien Nguyen3, Hien Nguyen2, B. O'Halloran8, Alain Omont22, Mat Page27, P. Panuzzo7, Andreas Papageorgiou20, H. Patel8, Chris Pearson28, Chris Pearson29, Ismael Perez-Fournon13, Ismael Perez-Fournon12, Michael Pohlen20, Jonathan Rawlings27, Gwenifer Raymond20, Dimitra Rigopoulou30, Dimitra Rigopoulou29, L. Riguccini7, D. Rizzo8, Giulia Rodighiero21, Isaac Roseboom6, Isaac Roseboom1, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz3, Douglas Scott24, Nick Seymour31, Nick Seymour27, D. L. Shupe3, A. J. Smith1, Jamie Stevens32, M. Symeonidis27, Markos Trichas33, K. E. Tugwell27, Mattia Vaccari21, Ivan Valtchanov4, Joaquin Vieira3, Marco P. Viero3, L. Vigroux22, Lifan Wang1, Robyn L. Ward1, Julie Wardlow17, G. Wright15, C. K. Xu3, Michael Zemcov3, Michael Zemcov2 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ∼380deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy programme designed to map a set of nested fields totalling ∼380 deg^2. Fields range in size from 0.01 to ∼20 deg^2, using the Herschel-Spectral and Photometric Imaging Receiver (SPIRE) (at 250, 350 and 500 μm) and the Herschel-Photodetector Array Camera and Spectrometer (PACS) (at 100 and 160 μm), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the reprocessed optical and ultraviolet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multiwavelength understanding of galaxy formation and evolution. The survey will detect of the order of 100 000 galaxies at 5σ in some of the best-studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to facilitate redshift determination, rapidly identify unusual objects and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include the total infrared emission of galaxies, the evolution of the luminosity function, the clustering properties of dusty galaxies and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

852 citations

Journal ArticleDOI
01 Sep 1998
TL;DR: It is shown that in the largest majority of cases, these error-rate expressions can be put in the form of a single integral with finite limits and an integrand composed of elementary functions, thus readily enabling numerical evaluation.
Abstract: Presented here is a unified approach to evaluating the error-rate performance of digital communication systems operating over a generalized fading channel. What enables the unification is the recognition of the desirable form for alternate representations of the Gaussian and Marcum Q-functions that are characteristic of error-probability expressions for coherent, differentially coherent, and noncoherent forms of detection. It is shown that in the largest majority of cases, these error-rate expressions can be put in the form of a single integral with finite limits and an integrand composed of elementary functions, thus readily enabling numerical evaluation.

851 citations

Journal ArticleDOI
29 Jan 1982-Science
TL;DR: Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring, leading to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.
Abstract: Voyager 2 photography has complemented that of Voyager I in revealing many additional characteristics of Saturn and its satellites and rings. Saturn's atmosphere contains persistent oval cloud features reminiscent of features on Jupiter. Smaller irregular features track out a pattern of zonal winds that is symmetric about Saturn's equator and appears to extend to great depth. Winds are predominantly eastward and reach 500 meters per second at the equator. Titan has several haze layers with significantly varying optical properties and a northern polar "collar" that is dark at short wavelengths. Several satellites have been photographed at substantially improved resolution. Enceladus' surface ranges from old, densely cratered terrain to relatively young, uncratered plains crossed by grooves and faults. Tethys has a crater 400 kilometers in diameter whose floor has domed to match Tethys' surface curvature and a deep trench that extends at least 270° around Tethys' circumference. Hyperion is cratered and irregular in shape. Iapetus' bright, trailing hemisphere includes several dark-floored craters, and Phoebe has a very low albedo and rotates in the direction opposite to that of its orbital revolution with a period of 9 hours. Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring. These observations lead to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.

847 citations

Journal ArticleDOI
TL;DR: CALIPSO as mentioned in this paper is a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions for long-term atmospheric measurements from Earth's orbit.
Abstract: Aerosols and clouds have important effects on Earth's climate through their effects on the radiation budget and the cycling of water between the atmosphere and Earth's surface. Limitations in our understanding of the global distribution and properties of aerosols and clouds are partly responsible for the current uncertainties in modeling the global climate system and predicting climate change. The CALIPSO satellite was developed as a joint project between NASA and the French space agency CNES to provide needed capabilities to observe aerosols and clouds from space. CALIPSO carries CALIOP, a two-wavelength, polarization-sensitive lidar, along with two passive sensors operating in the visible and thermal infrared spectral regions. CALIOP is the first lidar to provide long-term atmospheric measurements from Earth's orbit. Its profiling and polarization capabilities offer unique measurement capabilities. Launched together with the CloudSat satellite in April 2006 and now flying in formation with the A-train satellite constellation, CALIPSO is now providing information on the distribution and properties of aerosols and clouds, which is fundamental to advancing our understanding and prediction of climate. This paper provides an overview of the CALIPSO mission and instruments, the data produced, and early results.

845 citations

Journal ArticleDOI
TL;DR: In this paper, the authors obtained the first high-spatial-resolution (~1 arcsec), hard X-ray (0.5-7 keV) image of the central 40 pc (17 arcmin) of the Milky Way Galaxy and have discovered an Xray source, CXOGC J174540.
Abstract: We present results of our Chandra observation with the ACIS-I instrument centered on the position of Sagittarius A* (Sgr A*), the compact nonthermal radio source associated with the massive black hole (MBH) at the dynamical center of the Milky Way Galaxy. We have obtained the first high-spatial-resolution (~1 arcsec), hard X-ray (0.5-7 keV) image of the central 40 pc (17 arcmin) of the Galaxy and have discovered an X-ray source, CXOGC J174540.0-290027, coincident with the radio position of Sgr A* to within 0.35 arcsec, corresponding to a maximum projected distance of 16 light-days for an assumed distance to the center of the Galaxy of 8.0 kpc. We received 222 +/-17 (1 sigma) net counts from the source in 40.3 ks. Due to the low number of counts, the spectrum is well fit either by an absorbed power-law model with photon index Gamma = 2.7 (1.8-4.0) and column density NH = (9.8 [6.8-14.2]) x 10^22 cm^-2 (90% confidence interval) or by an absorbed optically thin thermal plasma model with kT = 1.9 (1.4-2.8) keV and NH = (11.5 [8.4-15.9]) x 10^22 cm^-2. Using the power-law model, the measured (absorbed) flux in the 2-10 keV band is (1.3 [1.1-1.7]) x 10^-13 ergs cm^-2 s^-1, and the absorption-corrected luminosity is (2.4 [1.8-5.4]) x 10^33 ergs s^-1. We also briefly discuss the complex structure of the X-ray emission from the Sgr A radio complex and along the Galactic plane and present morphological evidence that Sgr A* and Sgr A West lie within the hot plasma in the central cavity of Sgr A East.

837 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445