scispace - formally typeset
Search or ask a question
Institution

Jet Propulsion Laboratory

FacilityLa Cañada Flintridge, California, United States
About: Jet Propulsion Laboratory is a facility organization based out in La Cañada Flintridge, California, United States. It is known for research contribution in the topics: Mars Exploration Program & Telescope. The organization has 8801 authors who have published 14333 publications receiving 548163 citations. The organization is also known as: JPL & NASA JPL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented the Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb.
Abstract: Roth et al. (2014a) reported evidence for plumes of water venting from a southern high latitude region on Europa: spectroscopic detection of off-limb line emission from the dissociation products of water. Here, we present Hubble Space Telescope direct images of Europa in the far-ultraviolet (FUV) as it transited the smooth face of Jupiter to measure absorption from gas or aerosols beyond the Europa limb. Out of 10 observations, we found 3 in which plume activity could be implicated. Two observations showed statistically significant features at latitudes similar to Roth et al., and the third at a more equatorial location. We consider potential systematic effects that might influence the statistical analysis and create artifacts, and are unable to find any that can definitively explain the features, although there are reasons to be cautious. If the apparent absorption features are real, the magnitude of implied outgassing is similar to that of the Roth et al. feature; however, the apparent activity appears more frequently in our data.

210 citations

Journal ArticleDOI
TL;DR: The Mini-TES as discussed by the authors is a 6.35 cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly.
Abstract: [1] The Miniature Thermal Emission Spectrometer (Mini-TES) will provide remote measurements of mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers and guide the rovers to key targets for detailed in situ measurements by other rover experiments. The specific scientific objectives of the Mini-TES investigation are to (1) determine the mineralogy of rocks and soils, (2) determine the thermophysical properties of selected soil patches, and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer. The Mini-TES is a Fourier Transform Spectrometer covering the spectral range 5–29 μm (339.50 to 1997.06 cm−1) with a spectral sample interval of 9.99 cm−1. The Mini-TES telescope is a 6.35-cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly. A single deuterated triglycine sulfate (DTGS) uncooled pyroelectric detector with proven space heritage gives a spatial resolution of 20 mrad; an actuated field stop can reduce the field of view to 8 mrad. Mini-TES is mounted within the rover's Warm Electronics Box and views the terrain using its internal telescope looking up the hollow shaft of the Pancam Mast Assembly (PMA) to the fixed fold mirror and rotating elevation scan mirror in the PMA head located ∼1.5 m above the ground. The PMA provides a full 360°of azimuth travel and views from 30° above the nominal horizon to 50° below. An interferogram is collected every two seconds and transmitted to the Rover computer, where the Fast Fourier Transform, spectral summing, lossless compression, and data formatting are performed prior to transmission to Earth. Radiometric calibration is provided by two calibration V-groove blackbody targets instrumented with platinum thermistor temperature sensors with absolute temperature calibration of ±0.1°C. One calibration target is located inside the PMA head; the second is on the Rover deck. The Mini-TES temperature is expected to vary diurnally from −10 to +30°C, with most surface composition data collected at scene temperatures >270 K. For these conditions the radiometric precision for two-spectra summing is ±1.8 × 10−8 W cm−2 sr−1/cm−1 between 450 and 1500 cm−1, increasing to ∼4.2 × 10−8 W cm−2 sr−1/cm−1 at shorter (300 cm−1) and longer (1800 cm−1) wave numbers. The absolute radiance error will be <5 × 10−8 W cm−2 sr−1/cm−1, decreasing to ∼1 × 10−8 W cm−2 sr−1/cm−1 over the wave number range where the scene temperature will be determined (1200–1600 cm−1). The worst-case sum of these random and systematic radiance errors corresponds to an absolute temperature error of ∼0.4 K for a true surface temperature of 270 K and ∼1.5 K for a surface at 180 K. The Mini-TES will be operated in a 20-mrad panorama mode and an 8-mrad targeted mode, producing two-dimensional rasters and three-dimensional hyperspectral image cubes of varying sizes. The overall Mini-TES envelope size is 23.5 × 16.3 × 15.5 cm, and the mass is 2.40 kg. The power consumption is 5.6 W average. The Mini-TES was developed by Arizona State University and Raytheon Santa Barbara Remote Sensing.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the coincidence of times of high γ-ray flux and ejections of superluminal components from the core in EGRET blazars based on a Very Long Baseline Array (VLBA) monitoring program at 22 and 43 GHz from 1993 November to 1997 July.
Abstract: We examine the coincidence of times of high γ-ray flux and ejections of superluminal components from the core in EGRET blazars based on a Very Long Baseline Array (VLBA) monitoring program at 22 and 43 GHz from 1993 November to 1997 July. In 23 cases of γ-ray flares for which sufficient VLBA data exist, 10 of the flares (in eight objects) fall within 1 σ uncertainties of the extrapolated epoch of zero separation from the core of a superluminal radio component. In each of two sources (0528+134 and 1730-130), two successive γ-ray flares were followed by the appearance of new superluminal components. We carried out statistical simulations that show that if the number of coincidences is ≥10, the radio and γ-ray events are associated with each other at greater than 99.999% confidence. Our analysis of the observed behavior, including variability of the polarized radio flux, of the sources before, during, and after the γ-ray flares suggests that the γ-ray events occur in the superluminal radio knots. This implies that the γ-ray flares are caused by inverse Compton scattering by relativistic electrons in the parsec-scale regions of the jet rather than closer to the central engine.

209 citations

Proceedings ArticleDOI
24 Apr 1988
TL;DR: It is shown that human operator properties, which vary as a result of different types of grasp of the handle, affect the stability of the system in the hard-contact task, and human operator biomechanics must be taken into account to guarantee stable and ergonomic performance of advanced teleoperators.
Abstract: Experiments and simulations of a single-axis force-reflecting teleoperation system have been conducted to investigate the problem of contacting a hard environment and maintaining a controlled force in teleoperation in which position is fed forward from the hand controller (master) to the manipulator (slave), and force is fed back to the human operator through motors in the master. The simulations, using an electrical circuit model, reproduce the behavior of the real system, including effects of human operator biomechanics. It is shown that human operator properties, which vary as a result of different types of grasp of the handle, affect the stability of the system in the hard-contact task. The effect of a heavier grasp on the handle is equivalent to increased hand-controlled velocity damping in terms of the systems stability in the contact task, but control system damping sufficient to guarantee stable contact results in perceptible sluggishness of the control handle's response in free motion. These results suggest that human operator biomechanics must be taken into account to guarantee stable and ergonomic performance of advanced teleoperators. >

209 citations

Journal ArticleDOI
18 Oct 1996-Science
TL;DR: The far ultraviolet images of Jupiter from the Hubble Space Telescope Wide Field Planetary Camera 2 reveal polar auroral emissions at 300 kilometer resolution and three times higher sensitivity than previously achieved as discussed by the authors.
Abstract: Far-ultraviolet images of Jupiter from the Hubble Space Telescope Wide Field Planetary Camera 2 reveal polar auroral emissions at 300 kilometer resolution and three times higher sensitivity than previously achieved. Persistent features include a main oval containing most of the emission and magnetically connected to the middle magnetosphere, diffuse and variable emissions poleward of the main oval, and discrete emission from Io's magnetic footprint equatorward of the oval. The auroral emissions are variable, exhibit magnetic conjugacy, and are visible above the planet limb. All emissions approximately co-rotate with Jupiter except the Io “footprint,” which is fixed along Io's magnetic flux tube.

207 citations


Authors

Showing all 9033 results

NameH-indexPapersCitations
B. P. Crill148486111895
George Helou14466296338
H. K. Eriksen141474104208
Charles R. Lawrence141528104948
W. C. Jones14039597629
Gianluca Morgante13847898223
Jean-Paul Kneib13880589287
Kevin M. Huffenberger13840293452
Robert H. Brown136117479247
Federico Capasso134118976957
Krzysztof M. Gorski132380105912
Olivier Doré130427104737
Mark E. Thompson12852777399
Clive Dickinson12350180701
Daniel Stern12178869283
Network Information
Related Institutions (5)
California Institute of Technology
146.6K papers, 8.6M citations

90% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

90% related

Lawrence Livermore National Laboratory
48.1K papers, 1.9M citations

86% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

85% related

University of Colorado Boulder
115.1K papers, 5.3M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023177
2022416
2021359
2020348
2019384
2018445