scispace - formally typeset
Search or ask a question
Institution

Johannes Kepler University of Linz

EducationLinz, Oberösterreich, Austria
About: Johannes Kepler University of Linz is a education organization based out in Linz, Oberösterreich, Austria. It is known for research contribution in the topics: Computer science & Thin film. The organization has 6605 authors who have published 19243 publications receiving 385667 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O, indicating that the fast proton transport along the membranes is dominated by diffusion via interfacial water, and not via ionizable lipid moieties.
Abstract: Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. Commonly, it is treated as a succession of jumps between membrane-anchored proton-binding sites. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites by fluorescence measurements. The kinetics of the arrival is probed as a function of distance for different membranes and for different water isotopes. We found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O. We conclude that the fast proton transport along the membrane is dominated by diffusion via interfacial water, and not via ionizable lipid moieties.

88 citations

Journal ArticleDOI
TL;DR: A property on binary operations, which is called @a-migrativity, is considered, and it is used to obtain t-norms by means of convex combinations of two t- norms, one of them being discontinuous.

88 citations

Journal ArticleDOI
TL;DR: This work aims to assess the use of modeling in Industry 4.0 through the lens of modeling languages in a broad sense, and develops an updated map of the research landscape on modeling languages and techniques for Industry 5.0.
Abstract: Industry 4.0 integrates cyber-physical systems with the Internet of Things to optimize the complete value-added chain. Successfully applying Industry 4.0 requires the cooperation of various stakeholders from different domains. Domain-specific modeling languages promise to facilitate their involvement through leveraging (domain-specific) models to primary development artifacts. We aim to assess the use of modeling in Industry 4.0 through the lens of modeling languages in a broad sense. Based on an extensive literature review, we updated our systematic mapping study on modeling languages and modeling techniques used in Industry 4.0 (Wortmann et al., Conference on model-driven engineering languages and systems (MODELS’17), IEEE, pp 281–291, 2017) to include publications until February 2018. Overall, the updated study considers 3344 candidate publications that were systematically investigated until 408 relevant publications were identified. Based on these, we developed an updated map of the research landscape on modeling languages and techniques for Industry 4.0. Research on modeling languages in Industry 4.0 focuses on contributing methods to solve the challenges of digital representation and integration. To this end, languages from systems engineering and knowledge representation are applied most often but rarely combined. There also is a gap between the communities researching and applying modeling languages for Industry 4.0 that originates from different perspectives on modeling and related standards. From the vantage point of modeling, Industry 4.0 is the combination of systems engineering, with cyber-physical systems, and knowledge engineering. Research currently is splintered along topics and communities and accelerating progress demands for multi-disciplinary, integrated research efforts.

88 citations

Journal ArticleDOI
TL;DR: AFM was used to probe topology, conformational changes and initial substratecarrier interactions of Na+-glucose co-transporter (SGLT1) in living cells on a single-molecule level and demonstrates the potential of AFM to study the presence and dynamics of plasma membrane transporters in intact cells on the single molecule level.
Abstract: Atomic force microscopy (AFM) was used to probe topology, conformational changes and initial substratecarrier interactions of Na+-glucose co-transporter (SGLT1) in living cells on a single-molecule level. By scanning SGLT1-transfected Chinese hamster ovary (CHO) cells with AFM tips carrying an epitope-specific antibody directed against the extramembranous C-terminal loop 13, significant recognition events could be detected. Specificity was confirmed by the absence of events in nontransfected CHO cells and by the use of free antigen and free antibody superfusion. Thus, contrary to computer predictions on SGLT1 topology, loop 13 seems to be part of the extracellular surface of the transporter. Binding probability of the antibody decreased upon addition of phlorizin, a specific inhibitor of SGLT1, suggesting a considerable conformational change of loop 13 when the inhibitor occludes the sugar translocation pathway. Using an AFM tip carrying 1-thio-D-glucose, direct evidence could be obtained that in the presence of Na+ a sugarbinding site appears on the transporter surface. The binding site accepts the sugar residue of the glucoside phlorizin, free D-glucose, and D-galactose, but not free Lglucose and probably represents the first of several selectivity filters of the transporter. This work demonstrates the potential of AFM to study the presence and dynamics of plasma membrane transporters in intact cells on the single molecule level.

88 citations

Proceedings ArticleDOI
23 Mar 2004
TL;DR: This work describes the lightweight software component model P2Pcomp that address the development needs for mobile P2p applications and develops an abstract, flexible, and high-level communication mechanism among components via a ports concept, supporting protocol independence, location independence, and synchronization in components.
Abstract: Mobile peer-to-peer (P2P) computing applications involve collections of heterogeneous and resource-limited devices (such as PDAs or embedded sensor-actuator systems), typically operated in ad-hoc completely decentralized networks and without requiring dedicated infrastructure support. Short-range wireless communication technologies together with P2P networking capabilities on mobile devices are responsible for a proliferation of such applications, yet these applications are often complex and monolithic in nature due to the lack of lightweight component/container support in these resource-constrained devices. We describe our lightweight software component model P2Pcomp that address the development needs for mobile P2P applications. An abstract, flexible, and high-level communication mechanism among components is developed via a ports concept, supporting protocol independence, location independence, and (a)synchronous invocations; dependencies are not hard-coded in the components, but can be defined at deployment or runtime, providing late-binding and dynamic rerouteability capabilities. Peers can elect to provide services as well as consume them, services can migrate between containers, and services are ranked to support quality-of-service choices. Our lightweight container realization leverages the OSGi platform and can utilize various P2P communication mechanisms such as JXTA. A "smart space" application scenario demonstrates how P2Pcomp supports flexible and highly tailorable mobile P2P applications.

87 citations


Authors

Showing all 6718 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
A. Paul Alivisatos146470101741
Klaus-Robert Müller12976479391
Christoph J. Brabec12089668188
Andreas Heinz108107845002
Niyazi Serdar Sariciftci9959154055
Lars Samuelson9685036931
Peter J. Oefner9034830729
Dmitri V. Talapin9030339572
Tomás Torres8862528223
Ramesh Raskar8667030675
Siegfried Bauer8442226759
Alexander Eychmüller8244423688
Friedrich Schneider8255427383
Maksym V. Kovalenko8136034805
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

RWTH Aachen University
96.2K papers, 2.5M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
202354
2022187
20211,404
20201,412
20191,365