scispace - formally typeset
Search or ask a question
Institution

Johannes Kepler University of Linz

EducationLinz, Oberösterreich, Austria
About: Johannes Kepler University of Linz is a education organization based out in Linz, Oberösterreich, Austria. It is known for research contribution in the topics: Thin film & Quantum dot. The organization has 6605 authors who have published 19243 publications receiving 385667 citations.


Papers
More filters
Journal ArticleDOI
01 Dec 2019-Nature
TL;DR: The anomalous quantum Hall effect is observed in edge channels of topological insulators when there is a magnetic energy gap at the Dirac point; this gap has now been observed by low-temperature photoelectron spectroscopy in Mn-doped Bi2Te3.
Abstract: Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1–8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin–orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications. In theory, the anomalous quantum Hall effect is observed in edge channels of topological insulators when there is a magnetic energy gap at the Dirac point; this gap has now been observed by low-temperature photoelectron spectroscopy in Mn-doped Bi2Te3.

202 citations

Journal ArticleDOI
09 Apr 2010-ACS Nano
TL;DR: Investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior, and factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability.
Abstract: Aqueous dispersions of functionalized carbon nanotubes (CNTs) are now widely used for biomedical applications. Their stability in different in vitro or in vivo environments, however, depends on a wide range of parameters, such as pH and salt concentrations of the surrounding medium, and length, aspect ratio, surface charge, and functionalization of the applied CNTs. Although many of these aspects have been investigated separately, no study is available in the literature to date, which examines these parameters simultaneously. Therefore, we have chosen five types of carbon nanotubes, varying in their dimensions and surface properties, for a multidimensional analysis of dispersion stability in salt solutions of differing pH and concentrations. Furthermore, we examine the dispersion stability of oxidized CNTs in biological fluids, such as cellular growth media and human plasma, and their toxicity toward cancer cells. To enhance dispersibility and biocompatibility, the influence of different functionalization schemes is studied. The results of our investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior. In particular, factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability. Furthermore, covalent surface functionalization with amine-terminated polyethylene glycol (PEG) is demonstrated to stabilize CNT dispersions in various media and to reduce deleterious effects on cultured cells. These findings provide crucial data for the development of biofunctionalization protocols, for example, for future cancer theranostics, and optimizing the stability of functionalized CNTs in varied biological environments.

202 citations

Journal ArticleDOI
TL;DR: A feature‐based characterization of version control systems (VCSs) is provided, providing an overview about the state of the state‐of‐the‐art of versioning systems dedicated to modeling artifacts, and special focus is set on three‐way merging.
Abstract: Purpose – The purpose of this paper is to provide a feature‐based characterization of version control systems (VCSs), providing an overview about the state‐of‐the‐art of versioning systems dedicated to modeling artifacts.Design/methodology/approach – Based on a literature study of existing approaches, a description of the features of versioning systems is established. Special focus is set on three‐way merging which is an integral component of optimistic versioning. This characterization is employed on current model versioning systems, which allows the derivation of challenges in this research area.Findings – The results of the evaluation show that several challenges need to be addressed in future developments of VCSs and merging tools in order to allow the parallel development of model artifacts.Practical implications – Making model‐driven engineering (MDE) a success requires supporting the parallel development of model artifacts as is done nowadays for text‐based artifacts. Therefore, model versioning ca...

200 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated an important driver of employee satisfaction, namely interpersonal trust, and found that trust in management and trust in peers strongly influences employee satisfaction and, as a consequence, employee loyalty.
Abstract: Employee satisfaction is considered to be one of the most important drivers of quality, customer satisfaction and productivity. In this study we investigate an important driver of employee satisfaction. We argue that interpersonal trust (trust in management and trust in peers) strongly influences employee satisfaction and, as a consequence, employee loyalty. To test the relationships between these constructs we measured trust in management and trust in peers, satisfaction and loyalty of employees of an Austrian company in the energy sector (N = 131). The results of the statistical analysis using structural equation modeling with Partial Least Squares (PLS) confirm a strong link between trust, employee satisfaction and employee loyalty.

199 citations

Journal ArticleDOI
TL;DR: In this article, the photophysical properties of a new dyad molecule composed of a covalently linked Zn-phthalocyanine (antenna/donor) and a C60 derivative (acceptor) have been investigated.
Abstract: The photophysical properties of a new dyad molecule composed of a covalently linked Zn-phthalocyanine (antenna/donor) and a C60 derivative (acceptor) have been investigated. We report experimental evidence of long-lived charge separation in the solid state with a lifetime several orders of magnitude higher than in solution. Such a long lifetime, unusual for phthalocyanine–fullerene dyads, is the basis for possible photovoltaic applications. A first demonstration of a working solar cell using phthalocyanine–fullerene dyads as the active material is presented. Though the power conversion efficiency under simulated solar illumination of 80 mW cm−2 is found to be moderate (0.02%), it is an encouraging result for application of C60 dyad molecules to photovoltaics.

199 citations


Authors

Showing all 6718 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
A. Paul Alivisatos146470101741
Klaus-Robert Müller12976479391
Christoph J. Brabec12089668188
Andreas Heinz108107845002
Niyazi Serdar Sariciftci9959154055
Lars Samuelson9685036931
Peter J. Oefner9034830729
Dmitri V. Talapin9030339572
Tomás Torres8862528223
Ramesh Raskar8667030675
Siegfried Bauer8442226759
Alexander Eychmüller8244423688
Friedrich Schneider8255427383
Maksym V. Kovalenko8136034805
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

RWTH Aachen University
96.2K papers, 2.5M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20242
202354
2022187
20211,404
20201,412
20191,365